stil fiddling iwth combining dfs
This commit is contained in:
parent
90cbb49560
commit
262bd79204
2 changed files with 118 additions and 86 deletions
|
@ -8,69 +8,74 @@ Created on Tue Aug 6 12:56:03 2019
|
||||||
# FIXME: change filename 2(mcsm normalised data)
|
# FIXME: change filename 2(mcsm normalised data)
|
||||||
# to be consistent like (pnca_complex_mcsm_norm.csv) : changed manually, but ensure this is done in the mcsm pipeline
|
# to be consistent like (pnca_complex_mcsm_norm.csv) : changed manually, but ensure this is done in the mcsm pipeline
|
||||||
#=======================================================================
|
#=======================================================================
|
||||||
# Task: combine 2 dfs with aa position as linking column
|
# Task: combine 2 dfs on comm_valson cols by detecting them
|
||||||
|
# includes sainity checks
|
||||||
|
|
||||||
# Input: 2 dfs
|
|
||||||
# <gene.lower()>_complex_mcsm_norm.csv
|
|
||||||
# <gene.lower()>_foldx.csv
|
|
||||||
|
|
||||||
# Output: .csv of all 2 dfs combined
|
|
||||||
|
|
||||||
# useful link
|
|
||||||
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
|
|
||||||
#=======================================================================
|
#=======================================================================
|
||||||
#%% load packages
|
#%% load packages
|
||||||
import sys, os
|
import sys, os
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import re
|
||||||
#from varname import nameof
|
#from varname import nameof
|
||||||
|
|
||||||
#%% end of variable assignment for input and output files
|
#%% end of variable assignment for input and output files
|
||||||
#=======================================================================
|
#=======================================================================
|
||||||
#%% function/methd to combine 4 dfs
|
#%% function/methd to combine dfs
|
||||||
|
|
||||||
#def combine_stability_dfs(mcsm_df, foldx_df, out_combined_df):
|
def detect_common_cols (df1, df2):
|
||||||
def combine_stability_dfs(mcsm_df, foldx_df, my_join = 'outer'):
|
|
||||||
"""
|
"""
|
||||||
Combine 2 dfs
|
Detect comm_valson cols
|
||||||
|
|
||||||
@param mcsm_df: csv file (output from mcsm pipeline)
|
@param df1: df
|
||||||
@type mcsm_df: string
|
@type df1: pandas df
|
||||||
|
|
||||||
@param foldx_df: csv file (output from runFoldx.py)
|
@param df2: df
|
||||||
@type foldx_df: string
|
@type df2: pandas df
|
||||||
|
|
||||||
@param out_combined_df: csv file output
|
@return: comm_valson cols
|
||||||
@type out_combined_df: string
|
@type: list
|
||||||
|
|
||||||
@return: none, writes combined df as csv
|
|
||||||
"""
|
"""
|
||||||
#========================
|
common_cols = np.intersect1d(df1.columns, df2.columns).tolist()
|
||||||
# read input csv files to combine
|
#print('Length of comm_cols:', len(comm_cols)
|
||||||
#========================
|
# , '\nmerging column/s:', comm_cols
|
||||||
print('Reading input files:')
|
# , '\ntype:', type(comm_cols)
|
||||||
|
# , '\ndtypes in merging columns:\n', df1[comm_cols].dtypes)
|
||||||
|
|
||||||
left_df = pd.read_csv(mcsm_df, sep = ',')
|
return common_cols
|
||||||
left_df.columns = left_df.columns.str.lower()
|
|
||||||
|
|
||||||
right_df = pd.read_csv(foldx_df, sep = ',')
|
|
||||||
right_df.columns = right_df.columns.str.lower()
|
|
||||||
|
|
||||||
print('Dimension left df:', left_df.shape
|
def combine_stability_dfs(df1, df2, my_join = 'outer'):
|
||||||
, '\nDimesnion right_df:', right_df.shape
|
"""
|
||||||
# , '\njoin type:', join_type
|
Combine 2 dfs by finding merging columns automatically
|
||||||
|
|
||||||
|
@param df1: data frame
|
||||||
|
@type df1: pandas df
|
||||||
|
|
||||||
|
@param df2: data frame
|
||||||
|
@type df2: pandas df
|
||||||
|
|
||||||
|
@my_join: join type for merging
|
||||||
|
@type my_join: string
|
||||||
|
|
||||||
|
@return: combined_df
|
||||||
|
@type: pandas df
|
||||||
|
"""
|
||||||
|
|
||||||
|
print('Finding comm_valson cols and merging cols:'
|
||||||
,'\n=========================================================')
|
,'\n=========================================================')
|
||||||
|
|
||||||
print('Finding common cols and merging cols:'
|
common_cols = np.intersect1d(df1.columns, df2.columns).tolist()
|
||||||
,'\n=========================================================')
|
print('Length of comm_valson cols:', len(common_cols)
|
||||||
|
, '\nmerging column/s:', common_cols
|
||||||
|
, '\ntype:', type(common_cols)
|
||||||
common_cols = np.intersect1d(left_df.columns, right_df.columns).tolist()
|
, '\ndtypes in merging columns:\n', df1[common_cols].dtypes)
|
||||||
print('Length of common cols:', len(common_cols)
|
|
||||||
, '\ncommon column/s:', common_cols, 'type:', type(common_cols))
|
|
||||||
|
|
||||||
print('selecting consistent dtypes for merging (object i.e string)')
|
print('selecting consistent dtypes for merging (object i.e string)')
|
||||||
merging_cols = left_df[common_cols].select_dtypes(include = [object]).columns.tolist()
|
#merging_cols = df1[comm_valson_cols].select_dtypes(include = [object]).columns.tolist()
|
||||||
|
#merging_cols = df1[comm_valson_cols].select_dtypes(include = ['int64']).columns.tolist()
|
||||||
|
merging_cols = common_cols.copy()
|
||||||
|
|
||||||
nmerging_cols = len(merging_cols)
|
nmerging_cols = len(merging_cols)
|
||||||
print(' length of merging cols:', nmerging_cols
|
print(' length of merging cols:', nmerging_cols
|
||||||
, '\nmerging cols:', merging_cols, 'type:', type(merging_cols)
|
, '\nmerging cols:', merging_cols, 'type:', type(merging_cols)
|
||||||
|
@ -79,67 +84,94 @@ def combine_stability_dfs(mcsm_df, foldx_df, my_join = 'outer'):
|
||||||
#========================
|
#========================
|
||||||
# merge 1 (combined_df)
|
# merge 1 (combined_df)
|
||||||
# concatenating 2dfs:
|
# concatenating 2dfs:
|
||||||
# mcsm_df, foldx_df
|
# df1, df2
|
||||||
#========================
|
#========================
|
||||||
# checking cross-over of mutations in the two dfs to merge
|
# checking cross-over of mutations in the two dfs to merge
|
||||||
#ndiff1 = left_df.shape[0] - left_df['mutationinformation'].isin(right_df['mutationinformation']).sum()
|
ndiff_1 = df1[merging_cols].squeeze().isin(df2[merging_cols].squeeze()).sum()
|
||||||
ndiff_1 = left_df[merging_cols].squeeze().isin(right_df[merging_cols].squeeze()).sum()
|
ndiff1 = df1.shape[0] - ndiff_1
|
||||||
print('ndiff_1:', ndiff_1)
|
print('There are', ndiff1, 'unmatched mutations in left df')
|
||||||
|
|
||||||
ndiff1 = left_df.shape[0] - ndiff_1
|
#missing_mutinfo = df1[~left_df['mutationinformation'].isin(df2['mutationinformation'])]
|
||||||
#print('There are', ndiff1, 'unmatched mutations in left df')
|
|
||||||
|
|
||||||
#missing_mutinfo = left_df[~left_df['mutationinformation'].isin(right_df['mutationinformation'])]
|
|
||||||
#missing_mutinfo.to_csv('infoless_muts.csv')
|
#missing_mutinfo.to_csv('infoless_muts.csv')
|
||||||
|
|
||||||
#ndiff2 = right_df.shape[0] - right_df['mutationinformation'].isin(left_df['mutationinformation']).sum()
|
ndiff_2 = df2[merging_cols].squeeze().isin(df1[merging_cols].squeeze()).sum()
|
||||||
ndiff_2 = right_df[merging_cols].squeeze().isin(left_df[merging_cols].squeeze()).sum()
|
ndiff2 = df2.shape[0] - ndiff_2
|
||||||
print('ndiff_2:', ndiff_2)
|
print('There are', ndiff2, 'unmatched mutations in right_df')
|
||||||
|
|
||||||
ndiff2 = right_df.shape[0] - ndiff_2
|
#comm_vals = np.intersect1d(df1[merging_cols], df2[merging_cols])
|
||||||
#print('There are', ndiff2, 'unmatched mutations in right_df')
|
#comm_vals_count = len(comm_vals)
|
||||||
|
#print('length of comm_valson values:', comm_vals_count , '\ntype:', type(comm_vals_count))
|
||||||
comm = np.intersect1d(left_df[merging_cols], right_df[merging_cols])
|
|
||||||
comm_count = len(comm)
|
|
||||||
print('inner:', comm, '\nlength:', comm_count , '\ntype:', type(comm_count))
|
|
||||||
|
|
||||||
#========================
|
#========================
|
||||||
# sanity checks for join type
|
# merging dfs & sanity checks
|
||||||
#========================
|
#========================
|
||||||
fail = False
|
fail = False
|
||||||
print('combing with:', my_join)
|
print('combing with:', my_join)
|
||||||
combined_df = pd.merge(left_df, right_df, on = merging_cols, how = my_join)
|
comb_df = pd.merge(df1, df2, on = merging_cols, how = my_join)
|
||||||
combined_df1 = combined_df.drop_duplicates(subset = merging_cols, keep ='first')
|
combined_df = comb_df.drop_duplicates(subset = merging_cols, keep ='first')
|
||||||
|
|
||||||
if my_join == 'inner':
|
expected_cols = df1.shape[1] + df2.shape[1] - nmerging_cols
|
||||||
#expected_rows = left_df.shape[0] - ndiff1
|
|
||||||
expected_rows = comm_count
|
|
||||||
|
|
||||||
if my_join == 'outer':
|
|
||||||
#expected_rows = right_df.shape[0] + ndiff1
|
|
||||||
expected_rows = max(left_df.shape[0], right_df.shape[0])
|
|
||||||
|
|
||||||
if my_join == 'right':
|
if my_join == 'right':
|
||||||
expected_rows = right_df.shape[0]
|
df2_nd = df2.drop_duplicates(merging_cols, keep = 'first')
|
||||||
|
expected_rows = df2_nd.shape[0]
|
||||||
|
|
||||||
if my_join == 'left':
|
if my_join == 'left':
|
||||||
expected_rows = left_df.shape[0]
|
expected_rows = df1.shape[0]
|
||||||
|
|
||||||
expected_cols = left_df.shape[1] + right_df.shape[1] - nmerging_cols
|
|
||||||
|
|
||||||
if len(combined_df1) == expected_rows and len(combined_df1.columns) == expected_cols:
|
#if my_join == 'inner':
|
||||||
|
# expected_rows = comm_vals_count
|
||||||
|
|
||||||
|
#if my_join == 'outer':
|
||||||
|
# df1_nd = df1.drop_duplicates(merging_cols, keep = 'first')
|
||||||
|
# df2_nd = df2.drop_duplicates(merging_cols, keep = 'first')
|
||||||
|
# expected_rows = df1_nd.shape[0] + df2_nd.shape[0] - comm_vals_count
|
||||||
|
|
||||||
|
|
||||||
|
if my_join == 'inner' or 'outer' and len(merging_cols)>1:
|
||||||
|
comm_vals = np.intersect1d(df1['mutationinformation'], df2['mutationinformation'])
|
||||||
|
print('length of comm_values for merge:', len(comm_vals))
|
||||||
|
if my_join == 'inner':
|
||||||
|
expected_rows = len(comm_vals)
|
||||||
|
if my_join == 'outer':
|
||||||
|
df1_nd = df1.drop_duplicates(merging_cols, keep = 'first')
|
||||||
|
df2_nd = df2.drop_duplicates(merging_cols, keep = 'first')
|
||||||
|
expected_rows = df1_nd.shape[0] + df2_nd.shape[0] - len(comm_vals)
|
||||||
|
else:
|
||||||
|
comm_vals = np.intersect1d(df1[merging_cols], df2[merging_cols])
|
||||||
|
print('length of comm_values for merge:', len(comm_vals))
|
||||||
|
if my_join == 'inner':
|
||||||
|
expected_rows = len(comm_vals)
|
||||||
|
if my_join == 'outer':
|
||||||
|
df1_nd = df1.drop_duplicates(merging_cols, keep = 'first')
|
||||||
|
df2_nd = df2.drop_duplicates(merging_cols, keep = 'first')
|
||||||
|
expected_rows = df1_nd.shape[0] + df2_nd.shape[0] - len(comm_vals)
|
||||||
|
|
||||||
|
if len(combined_df) == expected_rows and len(combined_df.columns) == expected_cols:
|
||||||
print('PASS: successfully combined dfs with:', my_join, 'join')
|
print('PASS: successfully combined dfs with:', my_join, 'join')
|
||||||
else:
|
else:
|
||||||
print('FAIL: combined_df\'s expected rows and cols not matched')
|
print('FAIL: combined_df\'s expected rows and cols not matched')
|
||||||
fail = True
|
fail = True
|
||||||
print('\nExpected no. of rows:', expected_rows
|
print('\nExpected no. of rows:', expected_rows
|
||||||
, '\nGot:', len(combined_df1)
|
, '\nGot:', len(combined_df)
|
||||||
, '\nExpected no. of cols:', expected_cols
|
, '\nExpected no. of cols:', expected_cols
|
||||||
, '\nGot:', len(combined_df1.columns))
|
, '\nGot:', len(combined_df.columns))
|
||||||
if fail:
|
if fail:
|
||||||
sys.exit()
|
sys.exit()
|
||||||
|
|
||||||
return combined_df1
|
#if clean:
|
||||||
|
#foo = combined_df2.filter(regex = r'.*_x|_y', axis = 1)
|
||||||
|
#print(foo.columns)
|
||||||
|
#print('Detected duplicate cols with suffix: _x _y'
|
||||||
|
# , '\Dropping duplicate cols and cleaning')
|
||||||
|
|
||||||
|
# drop position col containing suffix '_y' and then rename col without suffix
|
||||||
|
combined_df_clean = combined_df.drop(combined_df.filter(regex = r'.*_y').columns, axis = 1)
|
||||||
|
combined_df_clean.rename(columns=lambda x: re.sub('_x$','', x), inplace = True)
|
||||||
|
|
||||||
|
return combined_df_clean
|
||||||
|
|
||||||
#%% end of function
|
#%% end of function
|
||||||
#=======================================================================
|
#=======================================================================
|
||||||
|
|
|
@ -52,7 +52,7 @@ gene = args.gene
|
||||||
# dirs
|
# dirs
|
||||||
#======
|
#======
|
||||||
datadir = homedir + '/' + 'git/Data'
|
datadir = homedir + '/' + 'git/Data'
|
||||||
indir = datadir + '/' + drug + '/' + 'output'
|
indir = datadir + '/' + drug + '/' + 'input'
|
||||||
outdir = datadir + '/' + drug + '/' + 'output'
|
outdir = datadir + '/' + drug + '/' + 'output'
|
||||||
|
|
||||||
#=======
|
#=======
|
||||||
|
@ -61,10 +61,10 @@ outdir = datadir + '/' + drug + '/' + 'output'
|
||||||
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm.csv'
|
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm.csv'
|
||||||
in_filename_foldx = gene.lower() + '_foldx.csv'
|
in_filename_foldx = gene.lower() + '_foldx.csv'
|
||||||
|
|
||||||
infile_mcsm = indir + '/' + in_filename_mcsm
|
infile_mcsm = outdir + '/' + in_filename_mcsm
|
||||||
infile_foldx = indir + '/' + in_filename_foldx
|
infile_foldx = outdir + '/' + in_filename_foldx
|
||||||
|
|
||||||
print('\nInput path:', indir
|
print('\nInput path:', outdir
|
||||||
, '\nInput filename1:', in_filename_mcsm
|
, '\nInput filename1:', in_filename_mcsm
|
||||||
, '\nInput filename2:', in_filename_foldx
|
, '\nInput filename2:', in_filename_foldx
|
||||||
, '\n============================================================')
|
, '\n============================================================')
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue