From 24b1cc244005177ab06464daee97351d277de3e2 Mon Sep 17 00:00:00 2001 From: Tanushree Tunstall Date: Fri, 18 Sep 2020 11:55:08 +0100 Subject: [PATCH] saving work --- scripts/plotting/corr_adjusted_PS_LIG.R | 87 +++++++++++++++++++++---- 1 file changed, 76 insertions(+), 11 deletions(-) diff --git a/scripts/plotting/corr_adjusted_PS_LIG.R b/scripts/plotting/corr_adjusted_PS_LIG.R index 8f02a70..ed96b4b 100644 --- a/scripts/plotting/corr_adjusted_PS_LIG.R +++ b/scripts/plotting/corr_adjusted_PS_LIG.R @@ -14,6 +14,7 @@ getwd() source("Header_TT.R") require(cowplot) source("combining_dfs_plotting.R") +source("my_pairs_panel.R") # should return the following dfs, directories and variables # PS combined: @@ -82,7 +83,58 @@ rm( merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig, my_df_u, m #=========================== table(df_ps$duet_outcome) + +#=========================== +# Data for Correlation plots:foldx +#=========================== +#============================ +# adding foldx scaled values +# scale data b/w -1 and 1 +#============================ +n = which(colnames(df_ps) == "ddg"); n + +my_min = min(df_ps[,n]); my_min +my_max = max(df_ps[,n]); my_max + +df_ps$foldx_scaled = ifelse(df_ps[,n] < 0 + , df_ps[,n]/abs(my_min) + , df_ps[,n]/my_max) +# sanity check +my_min = min(df_ps$foldx_scaled); my_min +my_max = max(df_ps$foldx_scaled); my_max + +if (my_min == -1 && my_max == 1){ + cat("PASS: foldx ddg successfully scaled b/w -1 and 1" + , "\nProceeding with assigning foldx outcome category") +}else{ + cat("FAIL: could not scale foldx ddg values" + , "Aborting!") +} + + +#================================ +# adding foldx outcome category +# ddg<0 = "Stabilising" (-ve) +#================================= + +c1 = table(df_ps$ddg < 0) +df_ps$foldx_outcome = ifelse(df_ps$ddg < 0, "Stabilising", "Destabilising") +c2 = table(df_ps$ddg < 0) + +if ( all(c1 == c2) ){ + cat("PASS: foldx outcome successfully created") +}else{ + cat("FAIL: foldx outcome could not be created. Aborting!") + exit() +} + +table(df_ps$foldx_outcome) + + +#====================== # adding log cols +#====================== + df_ps$log10_or_mychisq = log10(df_ps$or_mychisq) df_ps$neglog_pval_fisher = -log10(df_ps$pval_fisher) @@ -92,14 +144,21 @@ df_ps$neglog_pwald_kin = -log10(df_ps$pwald_kin) # subset data to generate pairwise correlations cols_to_select = c("duet_scaled" - , "log10_or_mychisq" - , "neglog_pval_fisher" + , "foldx_scaled" - #, "or_kin" - #, "neglog_pwald_kin" + #, "log10_or_mychisq" + #, "neglog_pval_fisher" + + , "or_kin" + , "neglog_pwald_kin" , "af" + , "asa" + , "rsa" + , "kd_values" + , "rd_values" + , "duet_outcome" , drug) @@ -113,14 +172,20 @@ dim(corr_data_ps) # assign nice colnames (for display) my_corr_colnames = c("DUET" - , "Log(OR)" - , "-Log(P)" + , "Foldx" + #, "Log(OR)" + #, "-Log(P)" - #, "OR adjusted" - #, "-Log(P wald)" + , "OR adjusted" + , "-Log(P wald)" , "AF" + , "ASA" + , "RSA" + , "KD" + , "RD" + , "duet_outcome" , drug) @@ -161,9 +226,9 @@ OutPlot1 = pairs.panels(my_corr_ps[1:(length(my_corr_ps)-1)] , jitter = T #, alpha = .05 #, points(pch = 19, col = c("#f8766d", "#00bfc4")) - , cex = 3 - , cex.axis = 2.5 - , cex.labels = 2.1 + , cex = 2 + , cex.axis = 1.5 + , cex.labels = 1.5 , cex.cor = 1 , smooth = F )