added scripts

This commit is contained in:
Tanushree Tunstall 2022-08-23 16:30:42 +01:00
parent dd69da01f6
commit 23b4f06017
10 changed files with 147 additions and 1014 deletions

View file

@ -135,5 +135,9 @@ aa_pos_lig2 = aa_pos_rna
aa_pos_lig3 = aa_pos_amp
tile_map=data.frame(tile=c("SRY","SAM","RNA","AMP"),
tile_colour=c("green","darkslategrey","navyblue","purple"))
tile_colour=c("green","darkslategrey","darkred","navyblue"))
# green: #00ff00
# darkslategrey : #2f4f4f
# darkred : #8b0000
# navyblue :#000080

View file

@ -2,12 +2,18 @@
# Data: Input
#==============
source("~/git/LSHTM_analysis/config/gid.R")
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
#cat("\nSourced plotting cols as well:", length(plotting_cols))
source("/home/tanu/git/LSHTM_analysis/scripts/plotting/plotting_thesis/gid/basic_barplots_gid.R")
source("/home/tanu/git/LSHTM_analysis/scripts/plotting/plotting_thesis/gid/pe_sens_site_count_gid.R")
#=======
# output
#=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
cat("plots will output to:", outdir_images)
#########################################################
if ( tolower(gene)%in%c("gid") ){
cat("\nPlots available for layout are:")

View file

@ -12,11 +12,12 @@ sensP_df = merged_df3[,c("mutationinformation",
head(sensP_df)
table(sensP_df$sensitivity)
#---------------
#--------------------------
# Total unique positions
#----------------
#--------------------------
tot_mut_pos = length(unique(sensP_df[[pos_colname_c]]))
cat("\nNo of Tot muts sites:", tot_mut_pos)
cat("\nThese are:", unique(sensP_df[[pos_colname_c]]))
# resistant mut pos
sens_site_allR = sensP_df[[pos_colname_c]][sensP_df$sensitivity=="R"]
@ -34,7 +35,7 @@ length(sens_site_UR)
common_pos = intersect(sens_site_UR,sens_site_US)
site_Cc = length(common_pos)
cat("\nNo of Common sites:", site_Cc
, "\nThese are:", common_pos)
, "\nThese are:", sort(unique(common_pos)))
#---------------
# Resistant muts

View file

@ -1,138 +0,0 @@
foo = df3_affinity_filtered[df3_affinity_filtered$ligand_distance<10,]
bar = df3_affinity_filtered[df3_affinity_filtered$interface_dist<10,]
wilcox.test(foo$mmcsm_lig_scaled~foo$sensitivity)
wilcox.test(foo$mmcsm_lig~foo$sensitivity)
wilcox.test(foo$affinity_scaled~foo$sensitivity)
wilcox.test(foo$ligand_affinity_change~foo$sensitivity)
wilcox.test(bar$mcsm_na_scaled~bar$sensitivity)
wilcox.test(bar$mcsm_na_affinity~bar$sensitivity)
wilcox.test(bar$mcsm_ppi2_scaled~bar$sensitivity)
wilcox.test(bar$mcsm_ppi2_affinity~bar$sensitivity)
# find the most "impactful" effect value
biggest=max(abs((a[c('affinity_scaled','mmcsm_lig_scaled','mcsm_ppi2_scaled','mcsm_na_scaled')])))
abs((a[c('affinity_scaled','mmcsm_lig_scaled','mcsm_ppi2_scaled','mcsm_na_scaled')]))==biggest
abs((a[c('affinity_scaled','mmcsm_lig_scaled','mcsm_ppi2_scaled','mcsm_na_scaled')]))==c(,biggest)
max(abs((a[c('affinity_scaled','mmcsm_lig_scaled','mcsm_ppi2_scaled','mcsm_na_scaled')])))
a2 = (a[c('affinity_scaled','mmcsm_lig_scaled','mcsm_ppi2_scaled','mcsm_na_scaled')])
a2
#
# biggest = max(abs(a2[1,]))
#
# #hmm
# #which(abs(a2) == biggest)
# #names(a2)[apply(a2, 1:4, function(i) which(i == max()))]
#
# # get row max
# a2$row_maximum = apply(abs(a2[,-1]), 1, max)
#
# # get colname for abs(max_value)
# #https://stackoverflow.com/questions/36960010/get-column-name-that-matches-specific-row-value-in-dataframe
# #names(df)[which(df == 1, arr.ind=T)[, "col"]]
# # yayy
# names(a2)[which(abs(a2) == biggest, arr.ind=T)[, "col"]]
#
# #another:https://statisticsglobe.com/return-column-name-of-largest-value-for-each-row-in-r
# colnames(a2)[max.col(abs(a2), ties.method = "first")] # Apply colnames & max.col functions
# #################################################
# # use whole df
# #gene_aff_cols = c('affinity_scaled','mmcsm_lig_scaled','mcsm_ppi2_scaled','mcsm_na_scaled')
#
# biggest = max(abs(a[gene_aff_cols]))
# a$max_es = biggest
# a$effect = names(a[gene_aff_cols])[which(abs(a[gene_aff_cols]) == biggest, arr.ind=T)[, "col"]]
#
# effect_name = unique(a$effect)
# #get index of value of max effect
# ind = (which(abs(a[effect_name]) == biggest, arr.ind=T))
# a[effect_name][ind]
# # extract sign
# a$effect_sign = sign(a[effect_name][ind])
########################################################
# maxn <- function(n) function(x) order(x, decreasing = TRUE)[n]
# second_big = abs(a[gene_aff_cols])[maxn(2)(abs(a[gene_aff_cols])]
# apply(df, 1, function(x)x[maxn(1)(x)])
# apply(a[gene_aff_cols], 1, function(x) abs(a[gene_aff_cols])[maxn(2)(abs(a[gene_aff_cols]))])
#########################################################
# loop
a2 = df2[df2$position%in%c(167, 423, 427),]
test <- a2 %>%
dplyr::group_by(position) %>%
biggest = max(abs(a2[gene_aff_cols]))
a2$max_es = max(abs(a2[gene_aff_cols]))
a2$effect = names(a2[gene_aff_cols])[which(abs(a2[gene_aff_cols]) == biggest, arr.ind=T)[, "col"]]
effect_name = unique(a2$effect)
#get index of value of max effect
ind = (which(abs(a2[effect_name]) == biggest, arr.ind=T))
a2[effect_name][ind]
# extract sign
a2$effect_dir = sign(a2[effect_name][ind])
#################################
df2_short = df2[df2$position%in%c(167, 423, 427),]
for (i in unique(df2_short$position) ){
#print(i)
#print(paste0("\nNo. of unique positions:", length(unique(df2$position))) )
#cat(length(unique(df2$position)))
a2 = df2_short[df2_short$position==i,]
biggest = max(abs(a2[gene_aff_cols]))
a2$max_es = max(abs(a2[gene_aff_cols]))
a2$effect = names(a2[gene_aff_cols])[which(abs(a2[gene_aff_cols]) == biggest, arr.ind=T)[, "col"]]
effect_name = unique(a2$effect)
#get index of value of max effect
ind = (which(abs(a2[effect_name]) == biggest, arr.ind=T))
a2[effect_name][ind]
# extract sign
a2$effect_sign = sign(a2[effect_name][ind])
}
#========================
df2_short = df3[df3$position%in%c(167, 423, 427),]
df2_short = df3[df3$position%in%c(170, 167, 493, 453, 435, 433, 480, 456, 445),]
df2_short = df3[df3$position%in%c(435, 480),]
df2_short = df3[df3$position%in%c(435, 480),]
give_col=function(x,y,df=df2_short){
df[df$position==x,y]
}
for (i in unique(df2_short$position) ){
#print(i)
#print(paste0("\nNo. of unique positions:", length(unique(df2$position))) )
#cat(length(unique(df2$position)))
#df2_short[df2_short$position==i,gene_aff_cols]
biggest = max(abs(give_col(i,gene_aff_cols)))
df2_short[df2_short$position==i,'abs_max_effect'] = biggest
df2_short[df2_short$position==i,'effect_type']= names(
give_col(i,gene_aff_cols)[which(
abs(
give_col(i,gene_aff_cols)
) == biggest, arr.ind=T
)[, "col"]])
effect_name = df2_short[df2_short$position==i,'effect_type'][1] # pick first one in case we have multiple exact values
# get index/rowname for value of max effect, and then use it to get the original sign
# here
#df2_short[df2_short$position==i,c(effect_name)]
#which(abs(df2_short[df2_short$position==i,c('position',effect_name)][effect_name])==biggest, arr.ind=T)
ind = rownames(which(abs(df2_short[df2_short$position==i,c('position',effect_name)][effect_name])== biggest, arr.ind=T))
df2_short[df2_short$position==i,'effect_sign'] = sign(df2_short[effect_name][ind,])
}
df2_short$effect_type = sub("\\.[0-9]+", "", df2_short$effect_type) # cull duplicate effect types that happen when there are exact duplicate values

View file

@ -1,316 +0,0 @@
#source("~/git/LSHTM_analysis/config/pnca.R")
#source("~/git/LSHTM_analysis/config/alr.R")
#source("~/git/LSHTM_analysis/config/gid.R")
source("~/git/LSHTM_analysis/config/embb.R")
#source("~/git/LSHTM_analysis/config/katg.R")
#source("~/git/LSHTM_analysis/config/rpob.R")
source("/home/tanu/git/LSHTM_analysis/my_header.R")
#########################################################
# TASK: Generate averaged affinity values
# across all affinity tools for a given structure
# as applicable...
#########################################################
#=============
# Input
#=============
df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv")
df3 = read.csv(df3_filename)
length(df3$mutationinformation)
all_colnames= colnames(df3)
#%%===============================================================
# FIXME: ADD distance to NA when SP replies
dist_columns = c("ligand_distance", "interface_dist")
DistCutOff = 10
common_cols = c("mutationinformation"
, "X5uhc_position"
, "X5uhc_offset"
, "position"
, "dst_mode"
, "mutation_info_labels"
, "sensitivity", dist_columns )
all_colnames[grep("scaled" , all_colnames)]
all_colnames[grep("outcome" , all_colnames)]
#===================
# stability cols
#===================
raw_cols_stability = c("duet_stability_change"
, "deepddg"
, "ddg_dynamut2"
, "ddg_foldx")
scaled_cols_stability = c("duet_scaled"
, "deepddg_scaled"
, "ddg_dynamut2_scaled"
, "foldx_scaled")
outcome_cols_stability = c("duet_outcome"
, "deepddg_outcome"
, "ddg_dynamut2_outcome"
, "foldx_outcome")
#===================
# affinity cols
#===================
raw_cols_affinity = c("ligand_affinity_change"
, "mmcsm_lig"
, "mcsm_ppi2_affinity"
, "mcsm_na_affinity")
scaled_cols_affinity = c("affinity_scaled"
, "mmcsm_lig_scaled"
, "mcsm_ppi2_scaled"
, "mcsm_na_scaled" )
outcome_cols_affinity = c( "ligand_outcome"
, "mmcsm_lig_outcome"
, "mcsm_ppi2_outcome"
, "mcsm_na_outcome")
#===================
# conservation cols
#===================
# raw_cols_conservation = c("consurf_score"
# , "snap2_score"
# , "provean_score")
#
# scaled_cols_conservation = c("consurf_scaled"
# , "snap2_scaled"
# , "provean_scaled")
#
# # CANNOT strictly be used, as categories are not identical with conssurf missing altogether
# outcome_cols_conservation = c("provean_outcome"
# , "snap2_outcome"
# #consurf outcome doesn't exist
# )
all_cols= c(common_cols
,raw_cols_stability, scaled_cols_stability, outcome_cols_stability
, raw_cols_affinity, scaled_cols_affinity, outcome_cols_affinity)
#=======
# output
#=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
#OutFile1
outfile_mean_aff = paste0(outdir_images, "/", tolower(gene)
, "_mean_ligand.csv")
print(paste0("Output file:", outfile_mean_aff))
#OutFile2
outfile_ppi2 = paste0(outdir_images, "/", tolower(gene)
, "_mean_ppi2.csv")
print(paste0("Output file:", outfile_ppi2))
#OutFile4
#outfile_mean_aff_priorty = paste0(outdir_images, "/", tolower(gene)
# , "_mean_affinity_priority.csv")
#print(paste0("Output file:", outfile_mean_aff_priorty))
#################################################################
#################################################################
# mut positions
length(unique(df3$position))
# mut_info checks
table(df3$mutation_info)
table(df3$mutation_info_orig)
table(df3$mutation_info_labels_orig)
# used in plots and analyses
table(df3$mutation_info_labels) # different, and matches dst_mode
table(df3$dst_mode)
# create column based on dst mode with different colname
table(is.na(df3$dst))
table(is.na(df3$dst_mode))
#===============
# Create column: sensitivity mapped to dst_mode
#===============
df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S")
table(df3$sensitivity)
length(unique((df3$mutationinformation)))
all_colnames = as.data.frame(colnames(df3))
#===============
# select columns specific to gene
#===============
gene_aff_cols = colnames(df3)[colnames(df3)%in%c(outcome_cols_affinity
, scaled_cols_affinity)]
gene_common_cols = colnames(df3)[colnames(df3)%in%common_cols]
cols_to_extract = c(gene_common_cols
, gene_aff_cols)
cat("\nExtracting", length(cols_to_extract), "columns")
df3_plot = df3[, cols_to_extract]
table(df3_plot$mmcsm_lig_outcome)
table(df3_plot$ligand_outcome)
##############################################################
# mCSM-lig, mCSM-NA, mCSM-ppi2, mmCSM-lig
#########################################
cols_to_numeric = c("ligand_outcome"
, "mcsm_na_outcome"
, "mcsm_ppi2_outcome"
, "mmcsm_lig_outcome")
#=====================================
# mCSM-lig: Filter ligand distance <10
#DistCutOff = 10
#LigDist_colname = "ligand_distance"
# extract outcome cols and map numeric values to the categories
# Destabilising == 0, and stabilising == 1 so rescaling can let -1 be destabilising
#=====================================
df3_lig = df3[, c("mutationinformation"
, "position"
, "ligand_distance"
, "ligand_affinity_change"
, "affinity_scaled"
, "ligand_outcome")]
df3_lig = df3_lig[df3_lig["ligand_distance"]<DistCutOff,]
expected_npos = sum(table(df3_lig["ligand_distance"]<DistCutOff))
expected_npos
if ( nrow(df3_lig) == expected_npos ){
cat(paste0("\nPASS:", LigDist_colname, " filtered according to criteria:", LigDist_cutoff, angstroms_symbol ))
}else{
stop(paste0("\nAbort:", LigDist_colname, " could not be filtered according to criteria:", LigDist_cutoff, angstroms_symbol))
}
# group by position
mean_lig_by_position <- df3_lig %>%
dplyr::group_by(position) %>%
#dplyr::summarize(avg_lig = max(df3_lig_num))
#dplyr::summarize(avg_lig = mean(ligand_outcome))
#dplyr::summarize(avg_lig = mean(affinity_scaled, na.rm = T))
dplyr::summarize(avg_lig = mean(ligand_affinity_change, na.rm = T))
class(mean_lig_by_position)
# convert to a df
mean_lig_by_position = as.data.frame(mean_lig_by_position)
table(mean_lig_by_position$avg_lig)
# REscale b/w -1 and 1
lig_min = min(mean_lig_by_position['avg_lig'])
lig_max = max(mean_lig_by_position['avg_lig'])
mean_lig_by_position['avg_lig_scaled'] = lapply(mean_lig_by_position['avg_lig']
, function(x) {
scales::rescale_mid(x
, to = c(-1,1)
, from = c(lig_min,lig_max)
, mid = 0)
#, from = c(0,1))
})
cat(paste0('Average (mcsm-lig+mmcsm-lig) scores:\n'
, head(mean_lig_by_position['avg_lig'])
, '\n---------------------------------------------------------------'
, '\nAverage (mcsm-lig+mmcsm-lig) scaled scores:\n'
, head(mean_lig_by_position['avg_lig_scaled'])))
if ( nrow(mean_lig_by_position) == length(unique(df3_lig$position)) ){
cat("\nPASS: Generated average values for ligand affinity" )
}else{
stop(paste0("\nAbort: length mismatch for ligand affinity data"))
}
max(mean_lig_by_position$avg_lig); min(mean_lig_by_position$avg_lig)
max(mean_lig_by_position$avg_lig_scaled); min(mean_lig_by_position$avg_lig_scaled)
#################################################################
# output
write.csv(mean_lig_by_position, outfile_mean_aff
, row.names = F)
cat("Finished writing file:\n"
, outfile_mean_aff
, "\nNo. of rows:", nrow(mean_lig_by_position)
, "\nNo. of cols:", ncol(mean_lig_by_position))
##################################################################
##################################################################
#=====================================
# mCSM-ppi2: Filter interface_dist <10
#DistCutOff = 10
#=====================================
df3_ppi2 = df3[, c("mutationinformation"
, "position"
, "interface_dist"
, "mcsm_ppi2_affinity"
, "mcsm_ppi2_scaled"
, "mcsm_ppi2_outcome")]
df3_ppi2 = df3_ppi2[df3_ppi2["interface_dist"]<DistCutOff,]
expected_npos = sum(table(df3_ppi2["interface_dist"]<DistCutOff))
expected_npos
if ( nrow(df3_ppi2) == expected_npos ){
cat(paste0("\nPASS:", "interface_dist", " filtered according to criteria:", LigDist_cutoff, angstroms_symbol ))
}else{
stop(paste0("\nAbort:", "interface_dist", " could not be filtered according to criteria:", LigDist_cutoff, angstroms_symbol))
}
# group by position
mean_ppi2_by_position <- df3_ppi2 %>%
dplyr::group_by(position) %>%
#dplyr::summarize(avg_ppi2 = max(df3_ppi2_num))
#dplyr::summarize(avg_ppi2 = mean(mcsm_ppi2_outcome))
#dplyr::summarize(avg_ppi2 = mean(mcsm_ppi2_scaled, na.rm = T))
dplyr::summarize(avg_ppi2 = mean(mcsm_ppi2_affinity, na.rm = T))
class(mean_ppi2_by_position)
# convert to a df
mean_ppi2_by_position = as.data.frame(mean_ppi2_by_position)
table(mean_ppi2_by_position$avg_ppi2)
# REscale b/w -1 and 1
lig_min = min(mean_ppi2_by_position['avg_ppi2'])
lig_max = max(mean_ppi2_by_position['avg_ppi2'])
mean_ppi2_by_position['avg_ppi2_scaled'] = lapply(mean_ppi2_by_position['avg_ppi2']
, function(x) {
scales::rescale_mid(x
, to = c(-1,1)
, from = c(lig_min,lig_max)
, mid = 0)
#, from = c(0,1))
})
cat(paste0('Average ppi2 scores:\n'
, head(mean_ppi2_by_position['avg_ppi2'])
, '\n---------------------------------------------------------------'
, '\nAverage ppi2 scaled scores:\n'
, head(mean_ppi2_by_position['avg_ppi2_scaled'])))
if ( nrow(mean_ppi2_by_position) == length(unique(df3_ppi2$position)) ){
cat("\nPASS: Generated average values for ppi2" )
}else{
stop(paste0("\nAbort: length mismatch for ppi2 data"))
}
max(mean_ppi2_by_position$avg_ppi2); min(mean_ppi2_by_position$avg_ppi2)
max(mean_ppi2_by_position$avg_ppi2_scaled); min(mean_ppi2_by_position$avg_ppi2_scaled)
write.csv(mean_ppi2_by_position, outfile_ppi2
, row.names = F)
cat("Finished writing file:\n"
, outfile_ppi2
, "\nNo. of rows:", nrow(mean_ppi2_by_position)
, "\nNo. of cols:", ncol(mean_ppi2_by_position))
# end of script
#===============================================================

View file

@ -1,74 +0,0 @@
#source("~/git/LSHTM_analysis/config/pnca.R")
#source("~/git/LSHTM_analysis/config/alr.R")
#source("~/git/LSHTM_analysis/config/gid.R")
source("~/git/LSHTM_analysis/config/embb.R")
#source("~/git/LSHTM_analysis/config/katg.R")
#source("~/git/LSHTM_analysis/config/rpob.R")
#########################################################
# TASK: Generate averaged stability values by position
# calculated across all stability tools
# for a given structure
#########################################################
#=======
# output
#=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
outfile_mean_ens_st_aff = paste0(outdir_images, "/", tolower(gene)
, "_mean_ens_stability.csv")
print(paste0("Output file:", outfile_mean_ens_st_aff))
#%%===============================================================
#=============
# Input: merged_df3
#=============
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
#merged_df3= paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv")
cols_to_extract_ms = c("mutationinformation", "position", "avg_stability_scaled")
df3 = merged_df3[, cols_to_extract_ms]
length(df3$mutationinformation)
# ensemble average of predictors by position
avg_stability_by_position <- df3 %>%
dplyr::group_by(position) %>%
dplyr::summarize(avg_stability_scaled_pos = mean(avg_stability_scaled))
min(avg_stability_by_position$avg_stability_scaled_pos)
max(avg_stability_by_position$avg_stability_scaled_pos)
avg_stability_by_position['avg_stability_scaled_pos_scaled'] = lapply(avg_stability_by_position['avg_stability_scaled_pos']
, function(x) {
scales::rescale_mid(x, to = c(-1,1)
#, from = c(en_stab_min,en_stab_max))
, mid = 0
, from = c(0,1))
})
cat(paste0('Average stability scores:\n'
, head(avg_stability_by_position['avg_stability_scaled_pos'])
, '\n---------------------------------------------------------------'
, '\nAverage stability scaled scores:\n'
, head(avg_stability_by_position['avg_stability_scaled_pos_scaled'])
))
all(avg_stability_by_position['avg_stability_scaled_pos'] == avg_stability_by_position['avg_stability_scaled_pos_scaled'])
# convert to a data frame
avg_stability_by_position = as.data.frame(avg_stability_by_position)
##################################################################
# output
#write.csv(combined_df, outfile_mean_ens_st_aff
write.csv(avg_stability_by_position
, outfile_mean_ens_st_aff
, row.names = F)
cat("Finished writing file:\n"
, outfile_mean_ens_st_aff
, "\nNo. of rows:", nrow(avg_stability_by_position)
, "\nNo. of cols:", ncol(avg_stability_by_position))
# end of script
#===============================================================

View file

@ -1,176 +0,0 @@
#source("~/git/LSHTM_analysis/config/pnca.R")
#source("~/git/LSHTM_analysis/config/alr.R")
#source("~/git/LSHTM_analysis/config/gid.R")
#source("~/git/LSHTM_analysis/config/embb.R")
#source("~/git/LSHTM_analysis/config/katg.R")
#source("~/git/LSHTM_analysis/config/rpob.R")
source("/home/tanu/git/LSHTM_analysis/my_header.R")
#########################################################
# TASK: Generate averaged stability values
# across all stability tools
# for a given structure
#########################################################
#=======
# output
#=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
outfile_mean_ens_st_aff = paste0(outdir_images, "/5uhc_", tolower(gene)
, "_mean_ens_stability.csv")
print(paste0("Output file:", outfile_mean_ens_st_aff))
#%%===============================================================
#=============
# Input
#=============
df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv")
df3 = read.csv(df3_filename)
length(df3$mutationinformation)
# mut_info checks
table(df3$mutation_info)
table(df3$mutation_info_orig)
table(df3$mutation_info_labels_orig)
# used in plots and analyses
table(df3$mutation_info_labels) # different, and matches dst_mode
table(df3$dst_mode)
# create column based on dst mode with different colname
table(is.na(df3$dst))
table(is.na(df3$dst_mode))
#===============
# Create column: sensitivity mapped to dst_mode
#===============
df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S")
table(df3$sensitivity)
length(unique((df3$mutationinformation)))
all_colnames = as.data.frame(colnames(df3))
common_cols = c("mutationinformation"
, "X5uhc_position"
, "dst_mode"
, "mutation_info_labels"
, "sensitivity"
, "X5uhc_position"
, "X5uhc_offset"
, "ligand_distance"
, "interface_dist")
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
#===================
# stability cols
#===================
raw_cols_stability = c("duet_stability_change"
, "deepddg"
, "ddg_dynamut2"
, "ddg_foldx")
scaled_cols_stability = c("duet_scaled"
, "deepddg_scaled"
, "ddg_dynamut2_scaled"
, "foldx_scaled")
outcome_cols_stability = c("duet_outcome"
, "deepddg_outcome"
, "ddg_dynamut2_outcome"
, "foldx_outcome")
###########################################################
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols
, raw_cols_stability
, scaled_cols_stability
, outcome_cols_stability)]
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols
, outcome_cols_stability)]
##############################################################
#####################
# Ensemble stability: outcome_cols_stability
#####################
# extract outcome cols and map numeric values to the categories
# Destabilising == 0, and stabilising == 1, so rescaling can let -1 be destabilising
df3_plot = df3[, cols_to_extract]
# assign numeric values to outcome
df3_plot[, outcome_cols_stability] <- sapply(df3_plot[, outcome_cols_stability]
, function(x){ifelse(x == "Destabilising", 0, 1)})
table(df3$duet_outcome)
table(df3_plot$duet_outcome)
#=====================================
# Stability (4 cols): average the scores
# across predictors ==> average by
# X5uhc_position ==> scale b/w -1 and 1
# column to average: ens_stability
#=====================================
cols_to_average = which(colnames(df3_plot)%in%outcome_cols_stability)
# ensemble average across predictors
df3_plot$ens_stability = rowMeans(df3_plot[,cols_to_average])
head(df3_plot$X5uhc_position); head(df3_plot$mutationinformation)
head(df3_plot$ens_stability)
table(df3_plot$ens_stability)
# ensemble average of predictors by X5uhc_position
mean_ens_stability_by_position <- df3_plot %>%
dplyr::group_by(X5uhc_position) %>%
dplyr::summarize(avg_ens_stability = mean(ens_stability))
# REscale b/w -1 and 1
#en_stab_min = min(mean_ens_stability_by_position['avg_ens_stability'])
#en_stab_max = max(mean_ens_stability_by_position['avg_ens_stability'])
# scale the average stability value between -1 and 1
# mean_ens_by_position['averaged_stability3_scaled'] = lapply(mean_ens_by_position['averaged_stability3']
# , function(x) ifelse(x < 0, x/abs(en3_min), x/en3_max))
mean_ens_stability_by_position['avg_ens_stability_scaled'] = lapply(mean_ens_stability_by_position['avg_ens_stability']
, function(x) {
scales::rescale(x, to = c(-1,1)
#, from = c(en_stab_min,en_stab_max))
, from = c(0,1))
})
cat(paste0('Average stability scores:\n'
, head(mean_ens_stability_by_position['avg_ens_stability'])
, '\n---------------------------------------------------------------'
, '\nAverage stability scaled scores:\n'
, head(mean_ens_stability_by_position['avg_ens_stability_scaled'])))
# convert to a data frame
mean_ens_stability_by_position = as.data.frame(mean_ens_stability_by_position)
#FIXME: sanity checks
# TODO: predetermine the bounds
# l_bound_ens = min(mean_ens_stability_by_position['avg_ens_stability_scaled'])
# u_bound_ens = max(mean_ens_stability_by_position['avg_ens_stability_scaled'])
#
# if ( (l_bound_ens == -1) && (u_bound_ens == 1) ){
# cat(paste0("PASS: ensemble stability scores averaged by X5uhc_position and then scaled"
# , "\nmin ensemble averaged stability: ", l_bound_ens
# , "\nmax ensemble averaged stability: ", u_bound_ens))
# }else{
# cat(paste0("FAIL: avergaed duet scores could not be scaled b/w -1 and 1"
# , "\nmin ensemble averaged stability: ", l_bound_ens
# , "\nmax ensemble averaged stability: ", u_bound_ens))
# quit()
# }
##################################################################
# output
#write.csv(combined_df, outfile_mean_ens_st_aff
write.csv(mean_ens_stability_by_position
, outfile_mean_ens_st_aff
, row.names = F)
cat("Finished writing file:\n"
, outfile_mean_ens_st_aff
, "\nNo. of rows:", nrow(mean_ens_stability_by_position)
, "\nNo. of cols:", ncol(mean_ens_stability_by_position))
# end of script
#===============================================================

View file

@ -1,46 +1,23 @@
#!/usr/bin/env Rscript
source("~/git/LSHTM_analysis/config/gid.R")
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
#########################################################
# TASK: Replace B-factors in the pdb file with the mean
# normalised stability values.
# read pdb file
# read mcsm mean stability value files
# extract the respective mean values and assign to the
# b-factor column within their respective pdbs
# generate some distribution plots for inspection
# normalised affinity values
#########################################################
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
cat(c(getwd(),"\n"))
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
library(bio3d)
require("getopt", quietly = TRUE) # cmd parse arguments
#========================================================
#drug = "pyrazinamide"
#gene = "pncA"
# command line args
spec = matrix(c(
"drug" , "d", 1, "character",
"gene" , "g", 1, "character"
), byrow = TRUE, ncol = 4)
opt = getopt(spec)
drug = opt$drug
gene = opt$gene
if(is.null(drug)|is.null(gene)) {
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
}
#========================================================
gene_match = paste0(gene,"_p.")
cat(gene)
gene_match = paste0(gene,"_p."); cat(gene_match)
cat(gene_match)
#=============
@ -49,9 +26,13 @@ cat(gene_match)
datadir = paste0("~/git/Data")
indir = paste0(datadir, "/", drug, "/input")
outdir = paste0("~/git/Data", "/", drug, "/output")
#outdir_plots = paste0("~/git/Data", "/", drug, "/output/plots")
outdir_plots = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
#outdir_plots = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
#=======
# output
#=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
cat("plots will output to:", outdir_images)
#======
# input
#======
@ -59,31 +40,31 @@ in_filename_pdb = paste0(tolower(gene), "_complex.pdb")
infile_pdb = paste0(indir, "/", in_filename_pdb)
cat(paste0("Input file:", infile_pdb) )
#in_filename_mean_stability = paste0(tolower(gene), "_mean_stability.csv")
#infile_mean_stability = paste0(outdir, "/", in_filename_mean_stability)
in_filename_mean_affinity = paste0(tolower(gene), "_mean_ligand.csv")
infile_mean_affinity = paste0(outdir_plots, "/", in_filename_mean_affinity)
cat(paste0("Input file:", infile_mean_affinity) )
#=======
# output
#=======
#out_filename_duet_mspdb = paste0(tolower(gene), "_complex_bduet_ms.pdb")
out_filename_lig_mspdb = paste0(tolower(gene), "_complex_b_lig_ms.pdb")
outfile_lig_mspdb = paste0(outdir_plots, "/", out_filename_lig_mspdb)
outfile_lig_mspdb = paste0(outdir_images,out_filename_lig_mspdb)
print(paste0("Output file:", outfile_lig_mspdb))
#%%===============================================================
#NOTE: duet here refers to the ensemble stability values
#NOTE: duet here refers to the ensemble affinity values
###########################
# Read file: average stability values
# Read file: average affinity values
# or mcsm_normalised file
###########################
my_df <- read.csv(infile_mean_stability, header = T)
str(my_df)
my_df_raw = merged_df3[, c("position", "ligand_distance", "avg_lig_affinity_scaled", "avg_lig_affinity")]
my_df_raw = my_df_raw[my_df_raw$ligand_distance<10,]
# avg by position on the SCALED values
my_df <- my_df_raw %>%
group_by(position) %>%
summarize(avg_ligaff_sc_pos = mean(avg_lig_affinity_scaled))
max(my_df$avg_ligaff_sc_pos)
min(my_df$avg_ligaff_sc_pos)
#############
# Read pdb
@ -98,13 +79,11 @@ my_pdb = read.pdb(infile_pdb
, hex = FALSE
, verbose = TRUE)
rm(in_filename_mean_affinity, in_filename_pdb)
# assign separately for duet and ligand
my_pdb_duet = my_pdb
#=========================================================
# Replacing B factor with mean stability scores
# Replacing B factor with mean affinity scores
# within the respective dfs
#==========================================================
# extract atom list into a variable
@ -121,8 +100,8 @@ max(df_duet$b); min(df_duet$b)
#==================================================
# histograms and density plots for inspection
# 1: original B-factors
# 2: original mean stability values
# 3: replaced B-factors with mean stability values
# 2: original mean affinity values
# 3: replaced B-factors with mean affinity values
#==================================================
# Set the margin on all sides
par(oma = c(3,2,3,0)
@ -131,6 +110,7 @@ par(oma = c(3,2,3,0)
#, mfrow = c(3,4))
, mfrow = c(3,2))
#=============
# Row 1 plots: original B-factors
# duet and affinity
@ -144,40 +124,28 @@ plot(density(df_duet$b)
, main = "Bfactor affinity")
#=============
# Row 2 plots: original mean stability values
# duet and affinity
# Row 2 plots: original mean affinity values
# affinity
#=============
#hist(my_df$averaged_duet
hist(my_df$avg_lig_scaled
hist(my_df$avg_ligaff_sc_pos
, xlab = ""
, main = "mean affinity values")
#plot(density(my_df$averaged_duet)
plot(density(my_df$avg_lig_scaled)
plot(density(my_df$avg_ligaff_sc_pos)
, xlab = ""
, main = "mean affinity values")
#==============
# Row 3 plots: replaced B-factors with mean stability values
# After actual replacement in the b factor column
#===============
################################################################
#=========
# step 0_P1: DONT RUN once you have double checked the matched output
#=========
# sanity check: match and assign to a separate column to double check
# colnames(my_df)
# df_duet$duet_scaled = my_df$averge_duet_scaled[match(df_duet$resno, my_df$position)]
#=========
# step 1_P1
#=========
# Be brave and replace in place now (don"t run sanity check)
# this makes all the B-factor values in the non-matched positions as NA
#df_duet$b = my_df$averaged_duet_scaled[match(df_duet$resno, my_df$position)]
df_duet$b = my_df$avg_lig_scaled[match(df_duet$resno, my_df$position)]
df_duet$b = my_df$avg_ligaff_sc_pos[match(df_duet$resno, my_df$position)]
#=========
# step 2_P1
@ -192,32 +160,6 @@ sum(df_duet$b == 0)
na_rep = 2
df_duet$b[is.na(df_duet$b)] = na_rep
# # sanity check: should be 0 and True
# # duet and lig
# if ( (sum(df_duet$b == na_rep) == b_na_duet) && (sum(df_lig$b == na_rep) == b_na_lig) ) {
# print ("PASS: NA's replaced with 0s successfully in df_duet and df_lig")
# } else {
# print("FAIL: NA replacement in df_duet NOT successful")
# quit()
# }
#
# max(df_duet$b); min(df_duet$b)
#
# # sanity checks: should be True
# if( (max(df_duet$b) == max(my_df$avg_ens_stability_scaled)) & (min(df_duet$b) == min(my_df$avg_ens_stability_scaled)) ){
# print("PASS: B-factors replaced correctly in df_duet")
# } else {
# print ("FAIL: To replace B-factors in df_duet")
# quit()
# }
# if( (max(df_lig$b) == max(my_df$avg_ens_affinity_scaled)) & (min(df_lig$b) == min(my_df$avg_ens_affinity_scaled)) ){
# print("PASS: B-factors replaced correctly in df_lig")
# } else {
# print ("FAIL: To replace B-factors in df_lig")
# quit()
# }
#=========
# step 3_P1
#=========
@ -241,17 +183,23 @@ table(df_duet$b)
sum(is.na(df_duet$b))
#=========
# step 5_P1
# step 5_P1: OUTPUT
#=========
cat(paste0("output file duet mean stability pdb:"
, outfile_lig_mspdb))
cat(paste0("output file duet mean affinity pdb:", outfile_lig_mspdb))
write.pdb(my_pdb_duet, outfile_lig_mspdb)
# OUTPUT: position file
poscsvF = paste0(outdir_images, tolower(gene), "_ligaff_positions.csv")
cat(paste0("output file duet mean NA affinity POSITIONS:", poscsvF))
filtered_pos = toString(my_df$position)
write.table(filtered_pos, poscsvF, row.names = F, col.names = F )
#============================
# Add the 3rd histogram and density plots for comparisons
#============================
# Plots continued...
# Row 3 plots: hist and density of replaced B-factors with stability values
# Row 3 plots: hist and density of replaced B-factors with affinity values
hist(df_duet$b
, xlab = ""
, main = "repalcedB duet")
@ -266,16 +214,8 @@ mtext(text = "Frequency"
, line = 0
, outer = TRUE)
mtext(text = paste0(tolower(gene), ": afinity distribution")
mtext(text = paste0(tolower(gene), ": affinity distribution")
, side = 3
, line = 0
, outer = TRUE)
#============================================
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# NOTE: This replaced B-factor distribution has the same
# x-axis as the PredAff normalised values, but the distribution
# is affected since 0 is overinflated/or hs an additional blip because
# of the positions not associated with resistance. This is because all the positions
# where there are no SNPs have been assigned 0???
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

View file

@ -1,46 +1,19 @@
#!/usr/bin/env Rscript
source("~/git/LSHTM_analysis/config/gid.R")
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
#########################################################
# TASK: Replace B-factors in the pdb file with the mean
# normalised stability values.
# read pdb file
# read mcsm mean stability value files
# extract the respective mean values and assign to the
# b-factor column within their respective pdbs
# generate some distribution plots for inspection
# normalised ppi2 values.
#########################################################
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
cat(c(getwd(),"\n"))
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
library(bio3d)
require("getopt", quietly = TRUE) # cmd parse arguments
#========================================================
#drug = "pyrazinamide"
#gene = "pncA"
# command line args
spec = matrix(c(
"drug" , "d", 1, "character",
"gene" , "g", 1, "character"
), byrow = TRUE, ncol = 4)
opt = getopt(spec)
drug = opt$drug
gene = opt$gene
if(is.null(drug)|is.null(gene)) {
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
}
#========================================================
gene_match = paste0(gene,"_p.")
cat(gene)
gene_match = paste0(gene,"_p."); cat(gene_match)
cat(gene_match)
#=============
@ -49,9 +22,13 @@ cat(gene_match)
datadir = paste0("~/git/Data")
indir = paste0(datadir, "/", drug, "/input")
outdir = paste0("~/git/Data", "/", drug, "/output")
#outdir_plots = paste0("~/git/Data", "/", drug, "/output/plots")
outdir_plots = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
#outdir_plots = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
#=======
# output
#=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
cat("plots will output to:", outdir_images)
#======
# input
#======
@ -59,30 +36,33 @@ in_filename_pdb = paste0(tolower(gene), "_complex.pdb")
infile_pdb = paste0(indir, "/", in_filename_pdb)
cat(paste0("Input file:", infile_pdb) )
# mean ppi2
in_filename_mean_ppi2 = paste0(tolower(gene), "_mean_ppi2.csv")
infile_mean_ppi2 = paste0(outdir_plots, "/", in_filename_mean_ppi2)
cat(paste0("Input file:", infile_mean_ppi2) )
#=======
# output
#=======
#out_filename_duet_mspdb = paste0(tolower(gene), "_complex_bduet_ms.pdb")
out_filename_ppi2_mspdb = paste0(tolower(gene), "_complex_b_ppi2_ms.pdb")
outfile_ppi2_mspdb = paste0(outdir_plots, "/", out_filename_ppi2_mspdb)
outfile_ppi2_mspdb = paste0(outdir_images,out_filename_ppi2_mspdb)
print(paste0("Output file:", outfile_ppi2_mspdb))
#%%===============================================================
#NOTE: duet here refers to the ensemble stability values
#NOTE: duet here refers to the ensemble ppi2 values
###########################
# Read file: average stability values
# Read file: average ppi2 values
# or mcsm_normalised file
###########################
my_df <- read.csv(infile_mean_ppi2, header = T)
str(my_df)
my_df_raw = merged_df3[, c("position", "mcsm_ppi2_scaled", "interface_dist")]
head(my_df_raw)
my_df_raw = my_df_raw[my_df_raw$interface_dist<10,]
my_df_raw$position
# avg by position on the SCALED values
my_df <- my_df_raw %>%
group_by(position) %>%
summarize(avg_ppi2_sc_pos = mean(mcsm_ppi2_scaled))
max(my_df$avg_ppi2_sc_pos)
min(my_df$avg_ppi2_sc_pos)
#============================================================
#############
# Read pdb
#############
@ -100,7 +80,7 @@ my_pdb = read.pdb(infile_pdb
my_pdb_duet = my_pdb
#=========================================================
# Replacing B factor with mean stability scores
# Replacing B factor with mean ppi2 scores
# within the respective dfs
#==========================================================
# extract atom list into a variable
@ -117,8 +97,8 @@ max(df_duet$b); min(df_duet$b)
#==================================================
# histograms and density plots for inspection
# 1: original B-factors
# 2: original mean stability values
# 3: replaced B-factors with mean stability values
# 2: original mean ppi2 values
# 3: replaced B-factors with mean ppi2 values
#==================================================
# Set the margin on all sides
par(oma = c(3,2,3,0)
@ -129,7 +109,7 @@ par(oma = c(3,2,3,0)
#=============
# Row 1 plots: original B-factors
# duet and affinity
# duet and ppi2
#=============
hist(df_duet$b
, xlab = ""
@ -140,40 +120,24 @@ plot(density(df_duet$b)
, main = "Bfactor ppi2")
#=============
# Row 2 plots: original mean stability values
# duet and affinity
# Row 2 plots: original mean ppi2 values
# ppi2
#=============
#hist(my_df$averaged_duet
hist(my_df$avg_ppi2_scaled
hist(my_df$avg_ppi2_sc_pos
, xlab = ""
, main = "mean ppi2 values")
#plot(density(my_df$averaged_duet)
plot(density(my_df$avg_ppi2_scaled)
plot(density(my_df$avg_ppi2_sc_pos)
, xlab = ""
, main = "mean ppi2 values")
#==============
# Row 3 plots: replaced B-factors with mean stability values
# After actual replacement in the b factor column
#===============
################################################################
#=========
# step 0_P1: DONT RUN once you have double checked the matched output
#=========
# sanity check: match and assign to a separate column to double check
# colnames(my_df)
# df_duet$duet_scaled = my_df$averge_duet_scaled[match(df_duet$resno, my_df$position)]
#=========
# step 1_P1
#=========
# Be brave and replace in place now (don"t run sanity check)
# this makes all the B-factor values in the non-matched positions as NA
#df_duet$b = my_df$averaged_duet_scaled[match(df_duet$resno, my_df$position)]
df_duet$b = my_df$avg_ppi2_scaled[match(df_duet$resno, my_df$position)]
df_duet$b = my_df$avg_ppi2_sc_pos[match(df_duet$resno, my_df$position)]
#=========
# step 2_P1
@ -188,32 +152,6 @@ sum(df_duet$b == 0)
na_rep = 2
df_duet$b[is.na(df_duet$b)] = na_rep
# # sanity check: should be 0 and True
# # duet and lig
# if ( (sum(df_duet$b == na_rep) == b_na_duet) && (sum(df_lig$b == na_rep) == b_na_lig) ) {
# print ("PASS: NA's replaced with 0s successfully in df_duet and df_lig")
# } else {
# print("FAIL: NA replacement in df_duet NOT successful")
# quit()
# }
#
# max(df_duet$b); min(df_duet$b)
#
# # sanity checks: should be True
# if( (max(df_duet$b) == max(my_df$avg_ens_stability_scaled)) & (min(df_duet$b) == min(my_df$avg_ens_stability_scaled)) ){
# print("PASS: B-factors replaced correctly in df_duet")
# } else {
# print ("FAIL: To replace B-factors in df_duet")
# quit()
# }
# if( (max(df_lig$b) == max(my_df$avg_ens_affinity_scaled)) & (min(df_lig$b) == min(my_df$avg_ens_affinity_scaled)) ){
# print("PASS: B-factors replaced correctly in df_lig")
# } else {
# print ("FAIL: To replace B-factors in df_lig")
# quit()
# }
#=========
# step 3_P1
#=========
@ -237,17 +175,23 @@ table(df_duet$b)
sum(is.na(df_duet$b))
#=========
# step 5_P1
# step 5_P1: OUTPUT
#=========
cat(paste0("output file mean ppi2 pdb:"
, outfile_ppi2_mspdb))
cat(paste0("output file duet mean ppi2 pdb:", outfile_ppi2_mspdb))
write.pdb(my_pdb_duet, outfile_ppi2_mspdb)
# OUTPUT: position file
poscsvF = paste0(outdir_images, tolower(gene), "_ppi2_positions.csv")
cat(paste0("output file duet mean ppi2 POSITIONS:", poscsvF))
filtered_pos = toString(my_df$position)
write.table(filtered_pos, poscsvF, row.names = F, col.names = F )
#============================
# Add the 3rd histogram and density plots for comparisons
#============================
# Plots continued...
# Row 3 plots: hist and density of replaced B-factors with stability values
# Row 3 plots: hist and density of replaced B-factors with ppi2 values
hist(df_duet$b
, xlab = ""
, main = "repalcedB duet")
@ -267,11 +211,3 @@ mtext(text = paste0(tolower(gene), ": ppi2 distribution")
, line = 0
, outer = TRUE)
#============================================
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# NOTE: This replaced B-factor distribution has the same
# x-axis as the PredAff normalised values, but the distribution
# is affected since 0 is overinflated/or hs an additional blip because
# of the positions not associated with resistance. This is because all the positions
# where there are no SNPs have been assigned 0???
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

View file

@ -1,11 +1,7 @@
#!/usr/bin/env Rscript
source("~/git/LSHTM_analysis/config/gid.R")
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
#source("~/git/LSHTM_analysis/config/alr.R")
source("~/git/LSHTM_analysis/config/embb.R")
#source("~/git/LSHTM_analysis/config/katg.R")
#source("~/git/LSHTM_analysis/config/gid.R")
#source("~/git/LSHTM_analysis/config/pnca.R")
#source("~/git/LSHTM_analysis/config/rpob.R")
#########################################################
# TASK: Replace B-factors in the pdb file with the mean
# normalised stability values.
@ -20,31 +16,12 @@ source("~/git/LSHTM_analysis/config/embb.R")
#########################################################
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
cat(c(getwd(),"\n"))
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
library(bio3d)
require("getopt", quietly = TRUE) # cmd parse arguments
#========================================================
#drug = ""
#gene = ""
# # command line args
# spec = matrix(c(
# "drug" , "d", 1, "character",
# "gene" , "g", 1, "character"
# ), byrow = TRUE, ncol = 4)
#
# opt = getopt(spec)
#
# drug = opt$drug
# gene = opt$gene
#
# if(is.null(drug)|is.null(gene)) {
# stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
# }
#========================================================
cat(gene)
gene_match = paste0(gene,"_p."); cat(gene_match)
@ -56,29 +33,25 @@ cat(gene_match)
datadir = paste0("~/git/Data")
indir = paste0(datadir, "/", drug, "/input")
outdir = paste0("~/git/Data", "/", drug, "/output")
#outdir_plots = paste0("~/git/Data", "/", drug, "/output/plots")
outdir_plots = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
#outdir_plots = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
#======
# input
#======
in_filename_pdb = paste0(tolower(gene), "_complex.pdb")
#in_filename_pdb = "/home/tanu/git/Writing/thesis/images/results/gid/str_figures/gid_complex_copy_arpeg.pdb"
infile_pdb = paste0(indir, "/", in_filename_pdb)
cat(paste0("Input file:", infile_pdb) )
#in_filename_mean_stability = paste0(tolower(gene), "_mean_stability.csv")
#infile_mean_stability = paste0(outdir, "/", in_filename_mean_stability)
in_filename_mean_stability = paste0(tolower(gene), "_mean_ens_stability.csv")
infile_mean_stability = paste0(outdir_plots, "/", in_filename_mean_stability)
cat(paste0("Input file:", infile_mean_stability) )
#=======
# output
#=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
cat("plots will output to:", outdir_images)
#out_filename_duet_mspdb = paste0(tolower(gene), "_complex_bduet_ms.pdb")
out_filename_duet_mspdb = paste0(tolower(gene), "_complex_b_stab_ms.pdb")
outfile_duet_mspdb = paste0(outdir_plots, "/", out_filename_duet_mspdb)
outfile_duet_mspdb = paste0(outdir_images, out_filename_duet_mspdb)
print(paste0("Output file:", outfile_duet_mspdb))
#%%===============================================================
@ -88,8 +61,31 @@ print(paste0("Output file:", outfile_duet_mspdb))
# Read file: average stability values
# or mcsm_normalised file
###########################
my_df <- read.csv(infile_mean_stability, header = T)
str(my_df)
my_df_raw = merged_df3[, c("position", "avg_stability", "avg_stability_scaled")]
# avg by position on the SCALED values
my_df <- my_df_raw %>%
group_by(position) %>%
summarize(avg_stab_sc_pos = mean(avg_stability_scaled))
max(my_df$avg_stab_sc_pos)
min(my_df$avg_stab_sc_pos)
#============================================================
# # scale b/w -1 and 1
# duet_min = min(my_df_by_position['avg_stab_sc_pos'])
# duet_max = max(my_df_by_position['avg_stab_sc_pos'])
#
# # scale the averaged_duet values
# my_df_by_position['avg_stab_sc_pos_scaled'] = lapply(my_df_by_position['avg_stab_sc_pos']
# , function(x) ifelse(x < 0, x/abs(duet_min), x/duet_max))
#
# cat(paste0('Average duet scores:\n', head(my_df_by_position['avg_stab_sc_pos_scaled'])
# , '\n---------------------------------------------------------------'
# , '\nScaled duet scores:\n', head(my_df_by_position['avg_stab_sc_pos_scaled'])))
#
# min(my_df_by_position['avg_stab_sc_pos_scaled'])
# max(my_df_by_position['avg_stab_sc_pos_scaled'])
#============================================================
#############
# Read pdb
@ -104,8 +100,6 @@ my_pdb = read.pdb(infile_pdb
, hex = FALSE
, verbose = TRUE)
rm(in_filename_mean_stability, in_filename_pdb)
# assign separately for duet and ligand
my_pdb_duet = my_pdb
@ -113,9 +107,6 @@ my_pdb_duet = my_pdb
# Replacing B factor with mean stability scores
# within the respective dfs
#==========================================================
# extract atom list into a variable
# since in the list this corresponds to data frame, variable will be a df
#df_duet = my_pdb_duet[[1]]
df_duet= my_pdb_duet[['atom']]
# make a copy: required for downstream sanity checks
@ -156,35 +147,22 @@ plot(density(df_duet$b)
#=============
#hist(my_df$averaged_duet
hist(my_df$avg_stability_scaled_pos_scaled
hist(my_df$avg_stab_sc_pos
, xlab = ""
, main = "mean stability values")
#plot(density(my_df$averaged_duet)
plot(density(my_df$avg_stability_scaled_pos_scaled)
plot(density(my_df$avg_stab_sc_pos)
, xlab = ""
, main = "mean stability values")
#==============
# Row 3 plots: replaced B-factors with mean stability values
# After actual replacement in the b factor column
#===============
################################################################
#=========
# step 0_P1: DONT RUN once you have double checked the matched output
#=========
# sanity check: match and assign to a separate column to double check
# colnames(my_df)
# df_duet$duet_scaled = my_df$averge_duet_scaled[match(df_duet$resno, my_df$position)]
#=========
# step 1_P1
#=========
# Be brave and replace in place now (don"t run sanity check)
# this makes all the B-factor values in the non-matched positions as NA
#df_duet$b = my_df$averaged_duet_scaled[match(df_duet$resno, my_df$position)]
df_duet$b = my_df$avg_stability_scaled_pos_scaled[match(df_duet$resno, my_df$position)]
df_duet$b = my_df$avg_stab_sc_pos[match(df_duet$resno, my_df$position)]
#=========
# step 2_P1
@ -198,26 +176,6 @@ sum(df_duet$b == 0)
# replace all NA in b factor with 0
na_rep = 2
df_duet$b[is.na(df_duet$b)] = na_rep
# # sanity check: should be 0 and True
# # duet
# if ( (sum(df_duet$b == na_rep) == b_na_duet) {
# print ("PASS: NA's replaced with 0s successfully in df_duet and df_lig")
# } else {
# print("FAIL: NA replacement in df_duet NOT successful")
# quit()
# }
#
# max(df_duet$b); min(df_duet$b)
#
# # sanity checks: should be True
# if( (max(df_duet$b) == max(my_df$avg_stability_scaled_pos_scaled)) & (min(df_duet$b) == min(my_df$avg_stability_scaled_pos_scaled)) ){
# print("PASS: B-factors replaced correctly in df_duet")
# } else {
# print ("FAIL: To replace B-factors in df_duet")
# quit()
# }
#=========
# step 3_P1
#=========
@ -270,11 +228,3 @@ mtext(text = paste0(tolower(gene), ": stability distribution")
, line = 0
, outer = TRUE)
#============================================
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# NOTE: This replaced B-factor distribution has the same
# x-axis as the PredAff normalised values, but the distribution
# is affected since 0 is overinflated/or hs an additional blip because
# of the positions not associated with resistance. This is because all the positions
# where there are no SNPs have been assigned 0???
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!