added scripts

This commit is contained in:
Tanushree Tunstall 2022-08-23 16:30:42 +01:00
parent dd69da01f6
commit 23b4f06017
10 changed files with 147 additions and 1014 deletions

View file

@ -1,11 +1,7 @@
#!/usr/bin/env Rscript
#source("~/git/LSHTM_analysis/config/alr.R")
source("~/git/LSHTM_analysis/config/embb.R")
#source("~/git/LSHTM_analysis/config/katg.R")
#source("~/git/LSHTM_analysis/config/gid.R")
#source("~/git/LSHTM_analysis/config/pnca.R")
#source("~/git/LSHTM_analysis/config/rpob.R")
source("~/git/LSHTM_analysis/config/gid.R")
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
#########################################################
# TASK: Replace B-factors in the pdb file with the mean
# normalised stability values.
@ -20,31 +16,12 @@ source("~/git/LSHTM_analysis/config/embb.R")
#########################################################
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
cat(c(getwd(),"\n"))
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
library(bio3d)
require("getopt", quietly = TRUE) # cmd parse arguments
#========================================================
#drug = ""
#gene = ""
# # command line args
# spec = matrix(c(
# "drug" , "d", 1, "character",
# "gene" , "g", 1, "character"
# ), byrow = TRUE, ncol = 4)
#
# opt = getopt(spec)
#
# drug = opt$drug
# gene = opt$gene
#
# if(is.null(drug)|is.null(gene)) {
# stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
# }
#========================================================
cat(gene)
gene_match = paste0(gene,"_p."); cat(gene_match)
@ -56,29 +33,25 @@ cat(gene_match)
datadir = paste0("~/git/Data")
indir = paste0(datadir, "/", drug, "/input")
outdir = paste0("~/git/Data", "/", drug, "/output")
#outdir_plots = paste0("~/git/Data", "/", drug, "/output/plots")
outdir_plots = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
#outdir_plots = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
#======
# input
#======
in_filename_pdb = paste0(tolower(gene), "_complex.pdb")
#in_filename_pdb = "/home/tanu/git/Writing/thesis/images/results/gid/str_figures/gid_complex_copy_arpeg.pdb"
infile_pdb = paste0(indir, "/", in_filename_pdb)
cat(paste0("Input file:", infile_pdb) )
#in_filename_mean_stability = paste0(tolower(gene), "_mean_stability.csv")
#infile_mean_stability = paste0(outdir, "/", in_filename_mean_stability)
in_filename_mean_stability = paste0(tolower(gene), "_mean_ens_stability.csv")
infile_mean_stability = paste0(outdir_plots, "/", in_filename_mean_stability)
cat(paste0("Input file:", infile_mean_stability) )
#=======
# output
#=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
cat("plots will output to:", outdir_images)
#out_filename_duet_mspdb = paste0(tolower(gene), "_complex_bduet_ms.pdb")
out_filename_duet_mspdb = paste0(tolower(gene), "_complex_b_stab_ms.pdb")
outfile_duet_mspdb = paste0(outdir_plots, "/", out_filename_duet_mspdb)
outfile_duet_mspdb = paste0(outdir_images, out_filename_duet_mspdb)
print(paste0("Output file:", outfile_duet_mspdb))
#%%===============================================================
@ -88,8 +61,31 @@ print(paste0("Output file:", outfile_duet_mspdb))
# Read file: average stability values
# or mcsm_normalised file
###########################
my_df <- read.csv(infile_mean_stability, header = T)
str(my_df)
my_df_raw = merged_df3[, c("position", "avg_stability", "avg_stability_scaled")]
# avg by position on the SCALED values
my_df <- my_df_raw %>%
group_by(position) %>%
summarize(avg_stab_sc_pos = mean(avg_stability_scaled))
max(my_df$avg_stab_sc_pos)
min(my_df$avg_stab_sc_pos)
#============================================================
# # scale b/w -1 and 1
# duet_min = min(my_df_by_position['avg_stab_sc_pos'])
# duet_max = max(my_df_by_position['avg_stab_sc_pos'])
#
# # scale the averaged_duet values
# my_df_by_position['avg_stab_sc_pos_scaled'] = lapply(my_df_by_position['avg_stab_sc_pos']
# , function(x) ifelse(x < 0, x/abs(duet_min), x/duet_max))
#
# cat(paste0('Average duet scores:\n', head(my_df_by_position['avg_stab_sc_pos_scaled'])
# , '\n---------------------------------------------------------------'
# , '\nScaled duet scores:\n', head(my_df_by_position['avg_stab_sc_pos_scaled'])))
#
# min(my_df_by_position['avg_stab_sc_pos_scaled'])
# max(my_df_by_position['avg_stab_sc_pos_scaled'])
#============================================================
#############
# Read pdb
@ -104,8 +100,6 @@ my_pdb = read.pdb(infile_pdb
, hex = FALSE
, verbose = TRUE)
rm(in_filename_mean_stability, in_filename_pdb)
# assign separately for duet and ligand
my_pdb_duet = my_pdb
@ -113,9 +107,6 @@ my_pdb_duet = my_pdb
# Replacing B factor with mean stability scores
# within the respective dfs
#==========================================================
# extract atom list into a variable
# since in the list this corresponds to data frame, variable will be a df
#df_duet = my_pdb_duet[[1]]
df_duet= my_pdb_duet[['atom']]
# make a copy: required for downstream sanity checks
@ -156,35 +147,22 @@ plot(density(df_duet$b)
#=============
#hist(my_df$averaged_duet
hist(my_df$avg_stability_scaled_pos_scaled
hist(my_df$avg_stab_sc_pos
, xlab = ""
, main = "mean stability values")
#plot(density(my_df$averaged_duet)
plot(density(my_df$avg_stability_scaled_pos_scaled)
plot(density(my_df$avg_stab_sc_pos)
, xlab = ""
, main = "mean stability values")
#==============
# Row 3 plots: replaced B-factors with mean stability values
# After actual replacement in the b factor column
#===============
################################################################
#=========
# step 0_P1: DONT RUN once you have double checked the matched output
#=========
# sanity check: match and assign to a separate column to double check
# colnames(my_df)
# df_duet$duet_scaled = my_df$averge_duet_scaled[match(df_duet$resno, my_df$position)]
#=========
# step 1_P1
#=========
# Be brave and replace in place now (don"t run sanity check)
# this makes all the B-factor values in the non-matched positions as NA
#df_duet$b = my_df$averaged_duet_scaled[match(df_duet$resno, my_df$position)]
df_duet$b = my_df$avg_stability_scaled_pos_scaled[match(df_duet$resno, my_df$position)]
df_duet$b = my_df$avg_stab_sc_pos[match(df_duet$resno, my_df$position)]
#=========
# step 2_P1
@ -198,26 +176,6 @@ sum(df_duet$b == 0)
# replace all NA in b factor with 0
na_rep = 2
df_duet$b[is.na(df_duet$b)] = na_rep
# # sanity check: should be 0 and True
# # duet
# if ( (sum(df_duet$b == na_rep) == b_na_duet) {
# print ("PASS: NA's replaced with 0s successfully in df_duet and df_lig")
# } else {
# print("FAIL: NA replacement in df_duet NOT successful")
# quit()
# }
#
# max(df_duet$b); min(df_duet$b)
#
# # sanity checks: should be True
# if( (max(df_duet$b) == max(my_df$avg_stability_scaled_pos_scaled)) & (min(df_duet$b) == min(my_df$avg_stability_scaled_pos_scaled)) ){
# print("PASS: B-factors replaced correctly in df_duet")
# } else {
# print ("FAIL: To replace B-factors in df_duet")
# quit()
# }
#=========
# step 3_P1
#=========
@ -269,12 +227,4 @@ mtext(text = paste0(tolower(gene), ": stability distribution")
, side = 3
, line = 0
, outer = TRUE)
#============================================
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# NOTE: This replaced B-factor distribution has the same
# x-axis as the PredAff normalised values, but the distribution
# is affected since 0 is overinflated/or hs an additional blip because
# of the positions not associated with resistance. This is because all the positions
# where there are no SNPs have been assigned 0???
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#============================================