added scripts

This commit is contained in:
Tanushree Tunstall 2022-08-23 16:30:42 +01:00
parent dd69da01f6
commit 23b4f06017
10 changed files with 147 additions and 1014 deletions

View file

@ -1,46 +1,23 @@
#!/usr/bin/env Rscript
source("~/git/LSHTM_analysis/config/gid.R")
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
#########################################################
# TASK: Replace B-factors in the pdb file with the mean
# normalised stability values.
# read pdb file
# read mcsm mean stability value files
# extract the respective mean values and assign to the
# b-factor column within their respective pdbs
# generate some distribution plots for inspection
# normalised affinity values
#########################################################
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
cat(c(getwd(),"\n"))
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
library(bio3d)
require("getopt", quietly = TRUE) # cmd parse arguments
#========================================================
#drug = "pyrazinamide"
#gene = "pncA"
# command line args
spec = matrix(c(
"drug" , "d", 1, "character",
"gene" , "g", 1, "character"
), byrow = TRUE, ncol = 4)
opt = getopt(spec)
drug = opt$drug
gene = opt$gene
if(is.null(drug)|is.null(gene)) {
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
}
#========================================================
gene_match = paste0(gene,"_p.")
cat(gene)
gene_match = paste0(gene,"_p."); cat(gene_match)
cat(gene_match)
#=============
@ -49,9 +26,13 @@ cat(gene_match)
datadir = paste0("~/git/Data")
indir = paste0(datadir, "/", drug, "/input")
outdir = paste0("~/git/Data", "/", drug, "/output")
#outdir_plots = paste0("~/git/Data", "/", drug, "/output/plots")
outdir_plots = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
#outdir_plots = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
#=======
# output
#=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
cat("plots will output to:", outdir_images)
#======
# input
#======
@ -59,31 +40,31 @@ in_filename_pdb = paste0(tolower(gene), "_complex.pdb")
infile_pdb = paste0(indir, "/", in_filename_pdb)
cat(paste0("Input file:", infile_pdb) )
#in_filename_mean_stability = paste0(tolower(gene), "_mean_stability.csv")
#infile_mean_stability = paste0(outdir, "/", in_filename_mean_stability)
in_filename_mean_affinity = paste0(tolower(gene), "_mean_ligand.csv")
infile_mean_affinity = paste0(outdir_plots, "/", in_filename_mean_affinity)
cat(paste0("Input file:", infile_mean_affinity) )
#=======
# output
#=======
#out_filename_duet_mspdb = paste0(tolower(gene), "_complex_bduet_ms.pdb")
out_filename_lig_mspdb = paste0(tolower(gene), "_complex_b_lig_ms.pdb")
outfile_lig_mspdb = paste0(outdir_plots, "/", out_filename_lig_mspdb)
outfile_lig_mspdb = paste0(outdir_images,out_filename_lig_mspdb)
print(paste0("Output file:", outfile_lig_mspdb))
#%%===============================================================
#NOTE: duet here refers to the ensemble stability values
#NOTE: duet here refers to the ensemble affinity values
###########################
# Read file: average stability values
# Read file: average affinity values
# or mcsm_normalised file
###########################
my_df <- read.csv(infile_mean_stability, header = T)
str(my_df)
my_df_raw = merged_df3[, c("position", "ligand_distance", "avg_lig_affinity_scaled", "avg_lig_affinity")]
my_df_raw = my_df_raw[my_df_raw$ligand_distance<10,]
# avg by position on the SCALED values
my_df <- my_df_raw %>%
group_by(position) %>%
summarize(avg_ligaff_sc_pos = mean(avg_lig_affinity_scaled))
max(my_df$avg_ligaff_sc_pos)
min(my_df$avg_ligaff_sc_pos)
#############
# Read pdb
@ -98,13 +79,11 @@ my_pdb = read.pdb(infile_pdb
, hex = FALSE
, verbose = TRUE)
rm(in_filename_mean_affinity, in_filename_pdb)
# assign separately for duet and ligand
my_pdb_duet = my_pdb
#=========================================================
# Replacing B factor with mean stability scores
# Replacing B factor with mean affinity scores
# within the respective dfs
#==========================================================
# extract atom list into a variable
@ -121,8 +100,8 @@ max(df_duet$b); min(df_duet$b)
#==================================================
# histograms and density plots for inspection
# 1: original B-factors
# 2: original mean stability values
# 3: replaced B-factors with mean stability values
# 2: original mean affinity values
# 3: replaced B-factors with mean affinity values
#==================================================
# Set the margin on all sides
par(oma = c(3,2,3,0)
@ -131,6 +110,7 @@ par(oma = c(3,2,3,0)
#, mfrow = c(3,4))
, mfrow = c(3,2))
#=============
# Row 1 plots: original B-factors
# duet and affinity
@ -144,40 +124,28 @@ plot(density(df_duet$b)
, main = "Bfactor affinity")
#=============
# Row 2 plots: original mean stability values
# duet and affinity
# Row 2 plots: original mean affinity values
# affinity
#=============
#hist(my_df$averaged_duet
hist(my_df$avg_lig_scaled
hist(my_df$avg_ligaff_sc_pos
, xlab = ""
, main = "mean affinity values")
#plot(density(my_df$averaged_duet)
plot(density(my_df$avg_lig_scaled)
plot(density(my_df$avg_ligaff_sc_pos)
, xlab = ""
, main = "mean affinity values")
#==============
# Row 3 plots: replaced B-factors with mean stability values
# After actual replacement in the b factor column
#===============
################################################################
#=========
# step 0_P1: DONT RUN once you have double checked the matched output
#=========
# sanity check: match and assign to a separate column to double check
# colnames(my_df)
# df_duet$duet_scaled = my_df$averge_duet_scaled[match(df_duet$resno, my_df$position)]
#=========
# step 1_P1
#=========
# Be brave and replace in place now (don"t run sanity check)
# this makes all the B-factor values in the non-matched positions as NA
#df_duet$b = my_df$averaged_duet_scaled[match(df_duet$resno, my_df$position)]
df_duet$b = my_df$avg_lig_scaled[match(df_duet$resno, my_df$position)]
df_duet$b = my_df$avg_ligaff_sc_pos[match(df_duet$resno, my_df$position)]
#=========
# step 2_P1
@ -192,32 +160,6 @@ sum(df_duet$b == 0)
na_rep = 2
df_duet$b[is.na(df_duet$b)] = na_rep
# # sanity check: should be 0 and True
# # duet and lig
# if ( (sum(df_duet$b == na_rep) == b_na_duet) && (sum(df_lig$b == na_rep) == b_na_lig) ) {
# print ("PASS: NA's replaced with 0s successfully in df_duet and df_lig")
# } else {
# print("FAIL: NA replacement in df_duet NOT successful")
# quit()
# }
#
# max(df_duet$b); min(df_duet$b)
#
# # sanity checks: should be True
# if( (max(df_duet$b) == max(my_df$avg_ens_stability_scaled)) & (min(df_duet$b) == min(my_df$avg_ens_stability_scaled)) ){
# print("PASS: B-factors replaced correctly in df_duet")
# } else {
# print ("FAIL: To replace B-factors in df_duet")
# quit()
# }
# if( (max(df_lig$b) == max(my_df$avg_ens_affinity_scaled)) & (min(df_lig$b) == min(my_df$avg_ens_affinity_scaled)) ){
# print("PASS: B-factors replaced correctly in df_lig")
# } else {
# print ("FAIL: To replace B-factors in df_lig")
# quit()
# }
#=========
# step 3_P1
#=========
@ -241,17 +183,23 @@ table(df_duet$b)
sum(is.na(df_duet$b))
#=========
# step 5_P1
# step 5_P1: OUTPUT
#=========
cat(paste0("output file duet mean stability pdb:"
, outfile_lig_mspdb))
cat(paste0("output file duet mean affinity pdb:", outfile_lig_mspdb))
write.pdb(my_pdb_duet, outfile_lig_mspdb)
# OUTPUT: position file
poscsvF = paste0(outdir_images, tolower(gene), "_ligaff_positions.csv")
cat(paste0("output file duet mean NA affinity POSITIONS:", poscsvF))
filtered_pos = toString(my_df$position)
write.table(filtered_pos, poscsvF, row.names = F, col.names = F )
#============================
# Add the 3rd histogram and density plots for comparisons
#============================
# Plots continued...
# Row 3 plots: hist and density of replaced B-factors with stability values
# Row 3 plots: hist and density of replaced B-factors with affinity values
hist(df_duet$b
, xlab = ""
, main = "repalcedB duet")
@ -266,16 +214,8 @@ mtext(text = "Frequency"
, line = 0
, outer = TRUE)
mtext(text = paste0(tolower(gene), ": afinity distribution")
mtext(text = paste0(tolower(gene), ": affinity distribution")
, side = 3
, line = 0
, outer = TRUE)
#============================================
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# NOTE: This replaced B-factor distribution has the same
# x-axis as the PredAff normalised values, but the distribution
# is affected since 0 is overinflated/or hs an additional blip because
# of the positions not associated with resistance. This is because all the positions
# where there are no SNPs have been assigned 0???
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!