still trying affinity phew

This commit is contained in:
Tanushree Tunstall 2022-08-02 16:55:31 +01:00
parent d94aa10c9b
commit 214e9232c6

View file

@ -3,7 +3,7 @@
#source("~/git/LSHTM_analysis/config/gid.R") #source("~/git/LSHTM_analysis/config/gid.R")
#source("~/git/LSHTM_analysis/config/embb.R") #source("~/git/LSHTM_analysis/config/embb.R")
#source("~/git/LSHTM_analysis/config/katg.R") #source("~/git/LSHTM_analysis/config/katg.R")
source("~/git/LSHTM_analysis/config/rpob.R") #source("~/git/LSHTM_analysis/config/rpob.R")
source("/home/tanu/git/LSHTM_analysis/my_header.R") source("/home/tanu/git/LSHTM_analysis/my_header.R")
######################################################### #########################################################
@ -57,15 +57,17 @@ table(df3$sensitivity)
length(unique((df3$mutationinformation))) length(unique((df3$mutationinformation)))
all_colnames = as.data.frame(colnames(df3)) all_colnames = as.data.frame(colnames(df3))
# FIXME: ADD distance to NA when SP replies
dist_columns = c("ligand_distance", "interface_dist")
DistCutOff = 10
common_cols = c("mutationinformation" common_cols = c("mutationinformation"
, "X5uhc_position" , "X5uhc_position"
, "X5uhc_offset" , "X5uhc_offset"
, "position" , "position"
, "dst_mode" , "dst_mode"
, "mutation_info_labels" , "mutation_info_labels"
, "sensitivity" , "sensitivity", dist_columns )
, "ligand_distance"
, "interface_dist")
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)] all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)] all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
@ -73,20 +75,20 @@ all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
#=================== #===================
# stability cols # stability cols
#=================== #===================
# raw_cols_stability = c("duet_stability_change" raw_cols_stability = c("duet_stability_change"
# , "deepddg" , "deepddg"
# , "ddg_dynamut2" , "ddg_dynamut2"
# , "ddg_foldx") , "ddg_foldx")
#
# scaled_cols_stability = c("duet_scaled" scaled_cols_stability = c("duet_scaled"
# , "deepddg_scaled" , "deepddg_scaled"
# , "ddg_dynamut2_scaled" , "ddg_dynamut2_scaled"
# , "foldx_scaled") , "foldx_scaled")
#
# outcome_cols_stability = c("duet_outcome" outcome_cols_stability = c("duet_outcome"
# , "deepddg_outcome" , "deepddg_outcome"
# , "ddg_dynamut2_outcome" , "ddg_dynamut2_outcome"
# , "foldx_outcome") , "foldx_outcome")
#=================== #===================
# affinity cols # affinity cols
@ -123,113 +125,109 @@ outcome_cols_affinity = c( "ligand_outcome"
# #consurf outcome doesn't exist # #consurf outcome doesn't exist
# ) # )
###################################################################### gene_aff_cols = colnames(df3)[colnames(df3)%in%scaled_cols_affinity]
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols gene_stab_cols = colnames(df3)[colnames(df3)%in%scaled_cols_stability]
, raw_cols_affinity gene_common_cols = colnames(df3)[colnames(df3)%in%common_cols]
, scaled_cols_affinity
, outcome_cols_affinity
# , raw_cols_stability
# , scaled_cols_stability
# , outcome_cols_stability
)]
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols sel_cols = c(gene_common_cols
, raw_cols_affinity , gene_stab_cols
, scaled_cols_affinity)] , gene_aff_cols)
df3_plot = df3[, cols_to_extract] #########################################
#df3_plot = df3[, cols_to_extract]
DistCutOff_colnames = c("ligand_distance", "interface_dist") df3_plot = df3[, sel_cols]
DistCutOff = 10
######################
#FILTERING HMMMM!
#all dist <10
#for embb this results in 2 muts
######################
df3_affinity_filtered = df3_plot[ (df3_plot$ligand_distance<10 | df3_plot$interface_dist <10),] df3_affinity_filtered = df3_plot[ (df3_plot$ligand_distance<10 | df3_plot$interface_dist <10),]
df3_affinity_filtered = df3_plot[ (df3_plot$ligand_distance<10 & df3_plot$interface_dist <10),]
c0u = unique(df3_affinity_filtered$position) c0u = unique(df3_affinity_filtered$position)
length(c0u) length(c0u)
foo = df3_affinity_filtered[df3_affinity_filtered$ligand_distance<10,] #df = df3_affinity_filtered
bar = df3_affinity_filtered[df3_affinity_filtered$interface_dist<10,] ##########################################
#NO FILTERING: annotate the whole df
wilcox.test(foo$mmcsm_lig_scaled~foo$sensitivity) df = df3_plot
wilcox.test(foo$mmcsm_lig~foo$sensitivity)
wilcox.test(foo$affinity_scaled~foo$sensitivity)
wilcox.test(foo$ligand_affinity_change~foo$sensitivity)
wilcox.test(bar$mcsm_na_scaled~bar$sensitivity)
wilcox.test(bar$mcsm_na_affinity~bar$sensitivity)
wilcox.test(bar$mcsm_ppi2_scaled~bar$sensitivity)
wilcox.test(bar$mcsm_ppi2_affinity~bar$sensitivity)
##############################################################
df = df3_affinity_filtered
sum(is.na(df)) sum(is.na(df))
df2 = na.omit(df) # Apply na.omit function df2 = na.omit(df)
c0u = unique(df2$position)
length(c0u)
a = df2[df2$position==37,] # reassign orig
sel_cols = c("mutationinformation", "position", scaled_cols_affinity) my_df_raw = df3
a = a[, sel_cols]
############################################################## # now subset
# FIXME: ADD distance to NA when SP replies df3 = df2
#######################################################
##################### #=================
# Ensemble affinity: affinity_cols # affinity effect
# mcsm_lig, mmcsm_lig and mcsm_na #=================
##################### give_col=function(x,y,df=df3){
# extract outcome cols and map numeric values to the categories df[df$position==x,y]
# Destabilising == 0, and stabilising == 1 so rescaling can let -1 be destabilising
#########################################
#=====================================
# Affintiy (2 cols): average the scores
# across predictors ==> average by
# position ==> scale b/w -1 and 1
# column to average: ens_affinity
#=====================================
cols_mcsm_lig = c("mutationinformation"
, "position"
, "sensitivity"
, "X5uhc_position"
, "X5uhc_offset"
, "ligand_distance"
, "ligand_outcome"
, "mmcsm_lig_outcome")
######################################################################
##################
# merge: mean ensemble stability and affinity by_position
####################
# if ( class(mean_ens_stability_by_position) && class(mean_ens_affinity_by_position) != "data.frame"){
# cat("Y")
# }
common_cols = intersect(colnames(mean_ens_stability_by_position), colnames(mean_ens_affinity_by_position))
if (dim(mean_ens_stability_by_position) && dim(mean_ens_affinity_by_position)){
print(paste0("PASS: dim's match, mering dfs by column :", common_cols))
#combined = as.data.frame(cbind(mean_duet_by_position, mean_affinity_by_position ))
combined_df = as.data.frame(merge(mean_ens_stability_by_position
, mean_ens_affinity_by_position
, by = common_cols
, all = T))
cat(paste0("\nnrows combined_df:", nrow(combined_df)
, "\nnrows combined_df:", ncol(combined_df)))
}else{
cat(paste0("FAIL: dim's mismatch, aborting cbind!"
, "\nnrows df1:", nrow(mean_duet_by_position)
, "\nnrows df2:", nrow(mean_affinity_by_position)))
quit()
} }
for (i in unique(df3$position) ){
#print(i)
biggest = max(abs(give_col(i,gene_aff_cols)))
df3[df3$position==i,'abs_max_effect'] = biggest
df3[df3$position==i,'effect_type']= names(
give_col(i,gene_aff_cols)[which(
abs(
give_col(i,gene_aff_cols)
) == biggest, arr.ind=T
)[, "col"]])
# effect_name = unique(df3[df3$position==i,'effect_type'])
effect_name = df3[df3$position==i,'effect_type'][1] # pick first one in case we have multiple exact values
ind = rownames(which(abs(df3[df3$position==i,c('position',effect_name)][effect_name])== biggest, arr.ind=T))
df3[df3$position==i,'effect_sign'] = sign(df3[effect_name][ind,])
}
df3$effect_type = sub("\\.[0-9]+", "", df3$effect_type) # cull duplicate effect types that happen when there are exact duplicate values
df3U = df3[!duplicated(df3[c('position')]), ]
table(df3U$effect_type)
#########################################################
#%% consider stability as well
df4 = df2
#=================
# stability + affinity effect
#=================
effect_cols = c(gene_aff_cols, gene_stab_cols)
give_col=function(x,y,df=df4){
df[df$position==x,y]
}
for (i in unique(df4$position) ){
#print(i)
biggest = max(abs(give_col(i,effect_cols)))
df4[df4$position==i,'abs_max_effect'] = biggest
df4[df4$position==i,'effect_type']= names(
give_col(i,effect_cols)[which(
abs(
give_col(i,effect_cols)
) == biggest, arr.ind=T
)[, "col"]])
# effect_name = unique(df4[df4$position==i,'effect_type'])
effect_name = df4[df4$position==i,'effect_type'][1] # pick first one in case we have multiple exact values
ind = rownames(which(abs(df4[df4$position==i,c('position',effect_name)][effect_name])== biggest, arr.ind=T))
df4[df4$position==i,'effect_sign'] = sign(df4[effect_name][ind,])
}
df4$effect_type = sub("\\.[0-9]+", "", df4$effect_type) # cull duplicate effect types that happen when there are exact duplicate values
df4U = df4[!duplicated(df4[c('position')]), ]
table(df4U$effect_type)
#%%============================================================ #%%============================================================
# output # output
write.csv(combined_df, outfile_mean_ens_st_aff write.csv(combined_df, outfile_mean_ens_st_aff