minor changes in data extraction

This commit is contained in:
Tanushree Tunstall 2020-07-08 16:01:54 +01:00
parent c958cc1081
commit 1fa0dc6ad4

View file

@ -105,7 +105,7 @@ outdir = datadir + '/' + drug + '/' + 'output'
#======= #=======
# input # input
#======= #=======
in_filename = 'original_tanushree_data_v2.csv' #19k #in_filename = 'original_tanushree_data_v2.csv' #19k
in_filename = 'mtb_gwas_meta_v3.csv' #33k in_filename = 'mtb_gwas_meta_v3.csv' #33k
infile = datadir + '/' + in_filename infile = datadir + '/' + in_filename
print('Input file: ', infile print('Input file: ', infile
@ -129,44 +129,46 @@ master_data = pd.read_csv(infile, sep = ',')
# extract elevant columns to extract from meta data related to the drug # extract elevant columns to extract from meta data related to the drug
meta_data = master_data[['id' if in_filename == 'original_tanushree_data_v2.csv':
, 'country' meta_data = master_data[['id'
, 'lineage' , 'country'
, 'sublineage' , 'lineage'
, 'drtype' #19k only , 'sublineage'
, drug , 'drtype' #19k only
, dr_muts_col , drug
, other_muts_col]] , dr_muts_col
, other_muts_col]]
core_cols = ['id' if in_filename == 'mtb_gwas_meta_v3.csv':
, 'country' core_cols = ['id'
, 'country2' , 'country'
, 'geographic_source' , 'country2'
, 'region' , 'geographic_source'
, 'date' , 'region'
, 'strain' , 'date'
, 'lineage' , 'strain'
, 'sublineage' #drtype renamed to resistance , 'lineage'
, 'resistance' , 'sublineage' #drtype renamed to resistance
, 'location' , 'resistance'
, 'host_body_site' , 'location'
, 'environment_material' , 'host_body_site'
, 'host_status' , 'environment_material'
, 'hiv_status' , 'host_status'
, 'HIV_status' , 'hiv_status'
, 'isolation_source'] , 'HIV_status'
, 'isolation_source']
variable_based_cols = [drug
, dr_muts_col variable_based_cols = [drug
, other_muts_col] , dr_muts_col
, other_muts_col]
cols_to_extract = core_cols + variable_based_cols cols_to_extract = core_cols + variable_based_cols
print('Extracting', len(cols_to_extract), 'columns from master data') print('Extracting', len(cols_to_extract), 'columns from master data')
meta_data = master_data[cols_to_extract] meta_data = master_data[cols_to_extract]
del(master_data, variable_based_cols, cols_to_extract)
del(master_data, variable_based_cols, cols_to_extract)
print('Extracted meta data:', meta_data.shape)
# checks and results # checks and results
total_samples = meta_data['id'].nunique() total_samples = meta_data['id'].nunique()
@ -190,9 +192,6 @@ meta_data[drug].value_counts()
print('RESULT: Sus and Res samples:\n', meta_data[drug].value_counts() print('RESULT: Sus and Res samples:\n', meta_data[drug].value_counts()
, '\n===========================================================') , '\n===========================================================')
# clear variables
del(in_filename, infile)
#del(outdir)
#%% #%%
# !!!IMPORTANT!!! sanity check: # !!!IMPORTANT!!! sanity check:
# This is to find out how many samples have 1 and more than 1 mutation,so you # This is to find out how many samples have 1 and more than 1 mutation,so you
@ -217,7 +216,7 @@ if len(clean_df) == (total_samples - na_count):
, '\nNo.of NAs in', dr_muts_col, '=', na_count, '/', total_samples , '\nNo.of NAs in', dr_muts_col, '=', na_count, '/', total_samples
, '\n==========================================================') , '\n==========================================================')
else: else:
sys.exit('FAIL: Could not drop NA') sys.exit('FAIL: Could not drop NAs')
dr_gene_count = 0 dr_gene_count = 0
wt = 0 wt = 0
@ -225,14 +224,14 @@ id_dr = []
id2_dr = [] id2_dr = []
for i, id in enumerate(clean_df.id): for i, id in enumerate(clean_df.id):
# print (i, id) #print (i, id)
# id_dr.append(id) #id_dr.append(id)
count_gene_dr = clean_df[dr_muts_col].iloc[i].count(gene_match) count_gene_dr = clean_df[dr_muts_col].iloc[i].count(gene_match)
if count_gene_dr > 0: if count_gene_dr > 0:
id_dr.append(id) id_dr.append(id)
if count_gene_dr > 1: if count_gene_dr > 1:
id2_dr.append(id) id2_dr.append(id)
# print(id, count_gene_dr) #print(id, count_gene_dr)
dr_gene_count = dr_gene_count + count_gene_dr dr_gene_count = dr_gene_count + count_gene_dr
count_wt = clean_df[dr_muts_col].iloc[i].count('WT') count_wt = clean_df[dr_muts_col].iloc[i].count('WT')
wt = wt + count_wt wt = wt + count_wt
@ -261,28 +260,26 @@ if len(clean_df) == (total_samples - na_count):
, '\nNo.of NAs =', na_count, '/', total_samples , '\nNo.of NAs =', na_count, '/', total_samples
, '\n=========================================================') , '\n=========================================================')
else: else:
print('FAIL: dropping NA failed' sys.exit('FAIL: Could not drop NAs')
, '\n=========================================================')
sys.exit()
other_gene_count = 0 other_gene_count = 0
wt_other = 0 wt_other = 0
id_other = [] id_other = []
id2_other = [] id2_other = []
for i, id in enumerate(clean_df.id): for i, id in enumerate(clean_df.id):
# print (i, id) #print (i, id)
# id_other.append(id) #id_other.append(id)
# count_gene_other = clean_df[other_muts_col].iloc[i].count('gene_match') count_gene_other = clean_df[other_muts_col].iloc[i].count(gene_match)
count_gene_other = clean_df[other_muts_col].iloc[i].count(gene_match)
if count_gene_other > 0: if count_gene_other > 0:
id_other.append(id) id_other.append(id)
if count_gene_other > 1: if count_gene_other > 1:
id2_other.append(id) id2_other.append(id)
# print(id, count_gene_other) #print(id, count_gene_other)
other_gene_count = other_gene_count + count_gene_other other_gene_count = other_gene_count + count_gene_other
count_wt = clean_df[other_muts_col].iloc[i].count('WT') count_wt = clean_df[other_muts_col].iloc[i].count('WT')
wt_other = wt_other + count_wt wt_other = wt_other + count_wt
print('RESULTS:') print('RESULTS:')
print('Total WT in other_muts_col:', wt_other) print('Total WT in other_muts_col:', wt_other)
print('Total matches of', gene_match, 'in', other_muts_col, ':', other_gene_count) print('Total matches of', gene_match, 'in', other_muts_col, ':', other_gene_count)
@ -307,50 +304,53 @@ print('gene to extract:', gene_match )
#=============== #===============
# FIXME: replace drug with variable containing the drug name # FIXME: replace drug with variable containing the drug name
# !!! important !!! # !!! important !!!
#meta_data_dr = meta_data[['id' if in_filename == 'original_tanushree_data_v2.csv':
# ,'country' meta_data_dr = meta_data[['id'
# ,'lineage' ,'country'
# ,'sublineage' ,'lineage'
# ,'drtype' ,'sublineage'
# , drug ,'drtype'
# , dr_muts_col , drug
# ]] , dr_muts_col]]
if in_filename == 'mtb_gwas_meta_v3.csv':
dr_based_cols = [drug, dr_muts_col] dr_based_cols = [drug, dr_muts_col]
cols_to_extract = core_cols + dr_based_cols
cols_to_extract = core_cols + dr_based_cols print('Extracting', len(cols_to_extract), 'columns from meta data')
print('Extracting', len(cols_to_extract), 'columns from meta data') meta_data_dr = meta_data[cols_to_extract]
del(dr_based_cols, cols_to_extract)
meta_data_dr = meta_data[cols_to_extract]
del(dr_based_cols, cols_to_extract)
if meta_data_dr.shape[0] == len(meta_data) and meta_data_dr.shape[1] == (len(meta_data.columns)-1): if meta_data_dr.shape[0] == len(meta_data) and meta_data_dr.shape[1] == (len(meta_data.columns)-1):
print('PASS: Dimensions match') print('PASS: Dimensions match'
, '\n===============================================================')
else: else:
print('FAIL: Dimensions mismatch:' print('FAIL: Dimensions mismatch:'
, 'Expected dim should be:', len(meta_data), (len(meta_data.columns)-1) , 'Expected dim:', len(meta_data), (len(meta_data.columns)-1)
, '\nGot:', meta_data_dr.shape , '\nGot:', meta_data_dr.shape
, '\n===============================================================') , '\n===============================================================')
sys.exit() sys.exit()
# FIXME FIXME FIXME FIXME
# Extract within this the gene of interest using string match # Extract within this the gene of interest using string match
#meta_gene_dr = meta_data.loc[meta_data[dr_muts_col].str.contains('gene_match*', na = False)] #meta_gene_dr = meta_data.loc[meta_data[dr_muts_col].str.contains('gene_match*', na = False)]
meta_gene_dr = meta_data_dr.loc[meta_data_dr[dr_muts_col].str.contains(gene_match, na = False)] meta_gene_dr = meta_data_dr.loc[meta_data_dr[dr_muts_col].str.contains(gene_match, na = False)]
print('gene_match in dr:', len(meta_gene_dr))
#!!!!! USE THIS ONCE VERIFIED!!!!
meta_gene_dr_snp = meta_data_dr.loc[meta_data_dr[dr_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False)]
print('gene_snp_match in dr:', len(meta_gene_dr_snp))
#!!!!! USE THIS ONCE VERIFIED!!!!
dr_id = meta_gene_dr['id'].unique() dr_id = meta_gene_dr['id'].unique()
print('RESULT: No. of samples with dr muts in pncA:', len(dr_id)) print('RESULT: No. of samples with dr muts in pncA:', len(dr_id))
print('checking RESULT:',
'\nexpected len =', len(id_dr),
'\nactual len =', len(meta_gene_dr) )
if len(id_dr) == len(meta_gene_dr): if len(id_dr) == len(meta_gene_dr):
print('PASS: lengths match' print('PASS: lengths match'
, '\n===============================================================') , '\n===============================================================')
else: else:
print('FAIL: length mismatch' print('FAIL: length mismatch'
, '\n===============================================================') , '\nExpected len:', len(id_dr)
sys.exit() , '\nGot:', len(meta_gene_dr))
sys.exit()
dr_id = pd.Series(dr_id) dr_id = pd.Series(dr_id)
@ -358,52 +358,54 @@ dr_id = pd.Series(dr_id)
# other mutations: extract gene_match entries from other_muts_col # other mutations: extract gene_match entries from other_muts_col
#================== #==================
print('Extracting other_muts from:', other_muts_col,'with other meta_data') print('Extracting other_muts from:', other_muts_col,'with other meta_data')
# FIXME: replace drug with variable containing the drug name
# !!! important !!!
#meta_data_other = meta_data[['id'
# ,'country'
# ,'lineage'
# ,'sublineage'
## ,'drtype'
# , drug
# , other_muts_col
# ]]
other_based_cols = [drug, other_muts_col]
cols_to_extract = core_cols + other_based_cols
print('Extracting', len(cols_to_extract), 'columns from meta data')
meta_data_other = meta_data[cols_to_extract]
del(other_based_cols, cols_to_extract)
if in_filename == 'original_tanushree_data_v2.csv':
meta_data_other = meta_data[['id'
, 'country'
, 'lineage'
, 'sublineage'
, 'drtype'
, drug
, other_muts_col]]
if in_filename == 'mtb_gwas_meta_v3.csv':
other_based_cols = [drug, other_muts_col]
cols_to_extract = core_cols + other_based_cols
print('Extracting', len(cols_to_extract), 'columns from meta data')
meta_data_other = meta_data[cols_to_extract]
del(other_based_cols, cols_to_extract)
if meta_data_other.shape[0] == len(meta_data) and meta_data_other.shape[1] == (len(meta_data.columns)-1): if meta_data_other.shape[0] == len(meta_data) and meta_data_other.shape[1] == (len(meta_data.columns)-1):
print('PASS: Dimensions match') print('PASS: Dimensions match'
, '\n===============================================================')
else: else:
print('FAIL: Dimensions mismatch:' print('FAIL: Dimensions mismatch:'
, 'Expected dim should be:', len(meta_data), (len(meta_data.columns)-1) , 'Expected dim:', len(meta_data), (len(meta_data.columns)-1)
, '\nGot:', meta_data_other.shape , '\nGot:', meta_data_other.shape
, '\n===============================================================') , '\n===============================================================')
sys.exit() sys.exit()
# FIXME FIXME FIXME FIXME
# Extract within this the gene of interest using string match # Extract within this the gene of interest using string match
meta_gene_other = meta_data_other.loc[meta_data_other[other_muts_col].str.contains(gene_match, na = False)] meta_gene_other = meta_data_other.loc[meta_data_other[other_muts_col].str.contains(gene_match, na = False)]
print('gene_match in other:', len(meta_gene_other))
#!!!!! USE THIS ONCE VERIFIED!!!!
meta_gene_other_snp = meta_data_other.loc[meta_data_other[other_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False)]
print('gene_snp_match in other:', len(meta_gene_other_snp))
#!!!!! USE THIS ONCE VERIFIED!!!!
other_id = meta_gene_other['id'].unique() other_id = meta_gene_other['id'].unique()
print('RESULT: No. of samples with other muts:', len(other_id)) print('RESULT: No. of samples with other muts:', len(other_id))
print('checking RESULT:',
'\nexpected len =', len(id_other),
'\nactual len =', len(meta_gene_other) )
if len(id_other) == len(meta_gene_other): if len(id_other) == len(meta_gene_other):
print('PASS: lengths match' print('PASS: lengths match'
, '\n==============================================================') , '\n==============================================================')
else: else:
print('FAIL: length mismatch' print('FAIL: length mismatch'
, '\n===============================================================') , '\nExpected len:', len(id_other)
sys.exit() , '\nGot:', len(meta_gene_other))
sys.exit()
other_id = pd.Series(other_id) other_id = pd.Series(other_id)
#%% Find common IDs #%% Find common IDs
@ -435,9 +437,9 @@ else:
sys.exit('FAIL: Further cross checks on common ids') sys.exit('FAIL: Further cross checks on common ids')
# good sanity check: use it later to check gene_sample_counts # good sanity check: use it later to check gene_sample_counts
expected_gene_samples = ( len(meta_gene_dr) + len(meta_gene_other) - common_mut_ids ) expected_gene_samples = (len(meta_gene_dr) + len(meta_gene_other) - common_mut_ids)
print('Expected no. of gene samples:', expected_gene_samples) print('Expected no. of gene samples:', expected_gene_samples
print('=================================================================') , '\n=================================================================')
#%% write file #%% write file
#print(outdir) #print(outdir)
out_filename_cid = gene.lower() + '_common_ids.csv' out_filename_cid = gene.lower() + '_common_ids.csv'
@ -455,6 +457,7 @@ del(out_filename_cid)
# clear variables # clear variables
del(dr_id, other_id, meta_data_dr, meta_data_other, common_ids, common_mut_ids, common_ids2) del(dr_id, other_id, meta_data_dr, meta_data_other, common_ids, common_mut_ids, common_ids2)
#%% Now extract 'all' pncA mutations: i.e 'gene_match*' #%% Now extract 'all' pncA mutations: i.e 'gene_match*'
print('extracting from string match:', gene_match, 'mutations from cols:\n' print('extracting from string match:', gene_match, 'mutations from cols:\n'
, dr_muts_col, 'and', other_muts_col, 'using string match:' , dr_muts_col, 'and', other_muts_col, 'using string match:'
@ -491,7 +494,6 @@ print('This is still dirty data: samples have ', gene_match, 'muts but may have
, '\nsince the format for mutations is mut1; mut2, etc.' , '\nsince the format for mutations is mut1; mut2, etc.'
, '\n=============================================================') , '\n=============================================================')
print('Performing tidy_split(): to separate the mutations into indivdual rows') print('Performing tidy_split(): to separate the mutations into indivdual rows')
#========= #=========
@ -522,13 +524,11 @@ if len(dr_gene_WF0) == dr_gene_count:
print('PASS: length of dr_gene_WF0 match with expected length' print('PASS: length of dr_gene_WF0 match with expected length'
, '\n===============================================================') , '\n===============================================================')
else: else:
print('FAIL: lengths mismatch' sys.exit('FAIL: lengths mismatch')
, '\n===============================================================')
sys.exit()
# count the freq of 'dr_muts' samples # count the freq of 'dr_muts' samples
dr_muts_df = dr_gene_WF0 [['id', dr_muts_col]] dr_muts_df = dr_gene_WF0 [['id', dr_muts_col]]
print('dim of dr_muts_df:', dr_muts_df.shape) print('Dim of dr_muts_df:', dr_muts_df.shape)
# add freq column # add freq column
dr_muts_df['dr_sample_freq'] = dr_muts_df.groupby('id')['id'].transform('count') dr_muts_df['dr_sample_freq'] = dr_muts_df.groupby('id')['id'].transform('count')
@ -550,25 +550,12 @@ else:
#!!! Important !!! #!!! Important !!!
# Assign 'column name' on which split was performed as an extra column # Assign 'column name' on which split was performed as an extra column
# This is so you can identify if mutations are dr_type or other in the final df # This is so you can identify if mutations are dr_type or other in the final df
dr_df_all = dr_gene_WF0.assign(mutation_info = dr_muts_col) dr_df = dr_gene_WF0.assign(mutation_info = dr_muts_col)
print('Dim of dr_df:', dr_df_all.shape print('Dim of dr_df:', dr_df.shape
, '\n==============================================================' , '\n=============================================================='
, '\nEnd of tidy split() on dr_muts, and added an extra column relecting mut_category' , '\nEnd of tidy split() on dr_muts, and added an extra column relecting mut_category'
, '\n===============================================================') , '\n===============================================================')
# Further clean up to remove stop mutations as these are similar in format to
# gene match but dont have a 'mutant aa' (for e.g: abc10* vs nssnp: abc10cde)
dr_stop = dr_df_all[dr_muts_col].str.count('\*').sum()
print('Removing stop mutations denoted by an asterix'
, '\nNo. of stop mutations:',dr_stop)
dr_df = dr_df_all[~dr_df_all[dr_muts_col].str.contains('\*')]
if len(dr_df) == len(dr_df_all) - dr_stop:
print('PASS: Successfully removed stop mutatiosn from dr_df')
else:
sys.exit('FAIL: Could not remove stop mutations. Check regex or variable names?')
#%% #%%
#========= #=========
# DF2: other_mutations_pyrazinamdie # DF2: other_mutations_pyrazinamdie
@ -623,26 +610,12 @@ else:
#!!! Important !!! #!!! Important !!!
# Assign 'column name' on which split was performed as an extra column # Assign 'column name' on which split was performed as an extra column
# This is so you can identify if mutations are dr_type or other in the final df # This is so you can identify if mutations are dr_type or other in the final df
other_df_all = other_gene_WF1.assign(mutation_info = other_muts_col) other_df = other_gene_WF1.assign(mutation_info = other_muts_col)
print('dim of other_df:', other_df_all.shape print('dim of other_df:', other_df.shape
, '\n===============================================================' , '\n==============================================================='
, '\nEnd of tidy split() on other_muts, and added an extra column relecting mut_category' , '\nEnd of tidy split() on other_muts, and added an extra column relecting mut_category'
, '\n===============================================================') , '\n===============================================================')
# Further clean up to remove stop mutations as these are similar in format to
# gene match but don't have a 'mutant aa' (for e.g: abc10* vs nssnp: abc10cde)
other_stop = other_df_all[other_muts_col].str.count('\*').sum()
print('Removing stop mutations denoted by an asterix'
, '\nNo. of stop mutations:',other_stop)
other_df = other_df_all[~other_df_all[other_muts_col].str.contains('\*')]
if len(other_df) == len(other_df_all) - other_stop:
print('PASS: Successfully removed stop mutatiosn from other_df')
else:
sys.exit('FAIL: Could not remove stop mutations. Check regex or variable names?')
#%% #%%
#========== #==========
# Concatentating the two dfs: equivalent of rbind in R # Concatentating the two dfs: equivalent of rbind in R
@ -673,7 +646,7 @@ else:
sys.exit('FAIL: No. of cols mismatch for concatenating') sys.exit('FAIL: No. of cols mismatch for concatenating')
# checking colnames before concat # checking colnames before concat
print('checking colnames BEFORE concatenating the two dfs...') print('Checking colnames BEFORE concatenating the two dfs...')
if (set(dr_df.columns) == set(other_df.columns)): if (set(dr_df.columns) == set(other_df.columns)):
print('PASS: column names match necessary for merging two dfs') print('PASS: column names match necessary for merging two dfs')
else: else:
@ -683,33 +656,38 @@ else:
print('Now appending the two dfs: Rbind') print('Now appending the two dfs: Rbind')
gene_LF_comb = pd.concat([dr_df, other_df], ignore_index = True, axis = 0) gene_LF_comb = pd.concat([dr_df, other_df], ignore_index = True, axis = 0)
print('Finding stop mutations in concatenated df')
stop_muts = gene_LF_comb['mutation'].str.contains('\*').sum() stop_muts = gene_LF_comb['mutation'].str.contains('\*').sum()
stop_muts_group = gene_LF_comb['mutation'].str.counts('\*').value_counts print('Finding stop mutations in concatenated df')
gene_LF_comb.groupby(['mutation_info'])['mutation'].apply(lambda x: x[x.str.contains('\*')].count()) if stop_muts > 0:
print('stop mutations detected'
, '\nNo. of stop muts:', stop_muts, '\n'
, gene_LF_comb.groupby(['mutation_info'])['mutation'].apply(lambda x: x[x.str.contains('\*')].count())
, '\nNow removing them')
gene_LF0_nssnp = gene_LF_comb[~gene_LF_comb['mutation'].str.contains('\*')]
print('snps only: by subtracting stop muts:', len(gene_LF0_nssnp))
gene_LF0 = gene_LF_comb[gene_LF_comb['mutation'].str.contains(nssnp_match, case = False)] gene_LF0 = gene_LF_comb[gene_LF_comb['mutation'].str.contains(nssnp_match, case = False)]
print('snps only by direct regex:', len(gene_LF0))
if gene_LF0_nssnp.equals(gene_LF0):
print('PASS: regex for extracting nssnp worked correctly & stop mutations succeessfully removed'
, '\nUsing the regex extracted df')
else:
sys.exit('FAIL: posssibly regex or no of stop mutations'
, 'Regex being used:', nssnp_match)
#sys.exit()
# checking colnames and length after concat # checking colnames and length after concat
print('checking colnames AFTER concatenating the two dfs...') print('Checking colnames AFTER concatenating the two dfs...')
if (set(dr_df.columns) == set(gene_LF0.columns)): if (set(dr_df.columns) == set(gene_LF0.columns)):
print('PASS: column names match print('PASS: column names match'
, '\n=============================================================') , '\n=============================================================')
else: else:
sys.exit('FAIL: Colnames mismatch AFTER concatenating') sys.exit('FAIL: Colnames mismatch AFTER concatenating')
print('checking concatened df') print('Checking concatenated df')
if len(gene_LF0) == len(dr_df) + len(other_df): if len(gene_LF0) == (len(dr_df) + len(other_df))- stop_muts :
print('PASS:length of df after concat match' print('PASS:length of df after concat match'
, '\n===============================================================') , '\n===============================================================')
else: else:
@ -722,80 +700,63 @@ else:
# mutations corresponding to gene_match* (string match pattern) # mutations corresponding to gene_match* (string match pattern)
# this will be your list you run OR calcs # this will be your list you run OR calcs
########### ###########
#my_regex = 'pncA_p.[A-Z]{3}[0-9]+[A-Z]{3}' print('Length of gene_LF0:', len(gene_LF0)
, '\nThis should be what we need. But just double checking and extracting nssnp for', gene_match
, '\nfrom LF0 (concatenated data) using case insensitive regex match:', nssnp_match)
gene_LF1 = gene_LF0[gene_LF0['mutation'].str.contains(nssnp_match, case = False)]
len(gene_LF1)
print('length of gene_LF0:', len(gene_LF0),
'\nThis should be what you need. But just double check and extract', gene_match,
'\nfrom LF0 (concatenated data) using string match:', gene_match
, '\nand double checking for stop mutations')
if gene_LF0['mutation'].str.count('\*').sum() > 0:
sys.exit('FAIL: Stop mutations detected post concatenating dfs. Resolve at source!')
print('Double checking and creating df: gene_LF1')
gene_LF1 = gene_LF0[gene_LF0['mutation'].str.contains(gene_match)]
gene_LF1 = gene_LF0[gene_LF0['mutation'].str.contains(nssnp_match, regex = True, case = False)]
if len(gene_LF0) == len(gene_LF1): if len(gene_LF0) == len(gene_LF1):
print('PASS: length of gene_LF0 and gene_LF1 match', print('PASS: length of gene_LF0 and gene_LF1 match',
'\nconfirming extraction and concatenating worked correctly') '\nConfirming extraction and concatenating worked correctly'
, '\n==========================================================')
else: else:
print('FAIL: BUT NOT FATAL!' print('FAIL: BUT NOT FATAL!'
, '\ngene_LF0 and gene_LF1 lengths differ' , '\ngene_LF0 and gene_LF1 lengths differ'
, '\nsuggesting error in extraction process' , '\nsuggesting error in extraction process'
, ' use gene_LF1 for downstreama analysis' , ' use gene_LF1 for downstreama analysis'
, '\n=========================================================') , '\n=========================================================')
print('length of dfs pre and post processing...'
print('Length of dfs pre and post processing...'
, '\ngene WF data (unique samples in each row):', extracted_gene_samples , '\ngene WF data (unique samples in each row):', extracted_gene_samples
, '\ngene LF data (unique mutation in each row):', len(gene_LF1) , '\ngene LF data (unique mutation in each row):', len(gene_LF1)
, '\n=============================================================') , '\n=============================================================')
if extracted_gene_samples > len(gene_LF1):
print('Stop mutations removed after concatentaing')
#%% sanity check for extraction #%% sanity check for extraction
# FIXME: This ought to pass if nsnsp_match happens right at the beginning of creating
#expected_rows
print('Verifying whether extraction process worked correctly...') print('Verifying whether extraction process worked correctly...')
if len(gene_LF1) == expected_rows: if len(gene_LF1) == expected_rows:
print('PASS: extraction process performed correctly' print('PASS: extraction process performed correctly'
, '\nexpected length:', expected_rows , '\nExpected length:', expected_rows
, '\ngot:', len(gene_LF1) , '\nGot:', len(gene_LF1)
, '\nRESULT: Total no. of mutant sequences for logo plot:', len(gene_LF1) , '\nRESULT: Total no. of mutant sequences for logo plot:', len(gene_LF1)
, '\n=========================================================') , '\n=========================================================')
else: else:
print('FAIL: extraction process has bugs' print('FAIL: extraction process has bugs'
, '\nexpected length:', expected_rows , '\nExpected length:', expected_rows
, '\ngot:', len(gene_LF1) , '\nGot:', len(gene_LF1)
, ', \Debug please' , '\nDebug please'
, '\n=========================================================') , '\n=========================================================')
#%% #%% FIXME FIXME FIXME FIXME
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
print('Performing some more sanity checks...') print('Performing some more sanity checks...')
# From LF1: # From LF1:
# no. of unique muts # no. of unique muts: useful for OR counts
distinct_muts = gene_LF1.mutation.value_counts() distinct_muts = gene_LF1.mutation.value_counts()
print('Distinct genomic mutations:', len(distinct_muts)) print('Distinct genomic mutations:', len(distinct_muts))
# no. of samples contributing the unique muta # no. of samples contributing the unique muts
gene_LF1.id.nunique() gene_LF1.id.nunique()
print('No.of samples contributing to distinct genomic muts:', gene_LF1.id.nunique() ) print('No.of samples contributing to distinct genomic muts:', gene_LF1.id.nunique())
# no. of dr and other muts # no. of dr and other muts
mut_grouped = gene_LF1.groupby('mutation_info').mutation.nunique() mut_grouped = gene_LF1.groupby('mutation_info').mutation.nunique()
print('No.of unique dr and other muts:\n', gene_LF1.groupby('mutation_info').mutation.nunique() ) print('No.of unique dr and other muts:\n', gene_LF1.groupby('mutation_info').mutation.nunique())
# sanity check # sanity check
if len(distinct_muts) == mut_grouped.sum() : if len(distinct_muts) == mut_grouped.sum() :
@ -803,17 +764,20 @@ if len(distinct_muts) == mut_grouped.sum() :
, '\n===============================================================') , '\n===============================================================')
else: else:
print('FAIL: Mistmatch in count of muts' print('FAIL: Mistmatch in count of muts'
, '\nexpected count:', len(distinct_muts) , '\nExpected count:', len(distinct_muts)
, '\nactual count:', mut_grouped.sum() , '\nActual count:', mut_grouped.sum()
, '\nmuts should be distinct within dr* and other* type' , '\nMuts should be distinct within dr* and other* type'
, '\ninspecting ...' , '\nInspecting...'
, '\n=========================================================') , '\n=========================================================')
muts_split = list(gene_LF1.groupby('mutation_info')) muts_split = list(gene_LF1.groupby('mutation_info'))
dr_muts = muts_split[0][1].mutation dr_muts = muts_split[0][1].mutation
other_muts = muts_split[1][1].mutation other_muts = muts_split[1][1].mutation
print('splitting muts by mut_info:', muts_split) print('splitting muts by mut_info:', muts_split)
print('no.of dr_muts samples:', len(dr_muts)) print('no.of dr_muts samples:', len(dr_muts))
print('no. of other_muts samples', len(other_muts)) print('no. of other_muts samples', len(other_muts))
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# FIXME FIXME FIXME
#%% #%%
# !!! IMPORTANT !!!! # !!! IMPORTANT !!!!
# sanity check: There should not be any common muts # sanity check: There should not be any common muts
@ -831,14 +795,13 @@ if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0:
print('Finding ambiguous muts...' print('Finding ambiguous muts...'
, '\n=========================================================' , '\n========================================================='
, '\nTotal no. of samples in dr_muts present in other_muts:', dr_muts.isin(other_muts).sum() , '\nTotal no. of samples in dr_muts present in other_muts:', dr_muts.isin(other_muts).sum()
, '\nThese are:\n', dr_muts[dr_muts.isin(other_muts)] , '\nThese are:', dr_muts[dr_muts.isin(other_muts)]
, '\n=========================================================' , '\n========================================================='
, '\nTotal no. of samples in other_muts present in dr_muts:', other_muts.isin(dr_muts).sum() , '\nTotal no. of samples in other_muts present in dr_muts:', other_muts.isin(dr_muts).sum()
, '\nThese are:\n', other_muts[other_muts.isin(dr_muts)] , '\nThese are:\n', other_muts[other_muts.isin(dr_muts)]
, '\n=========================================================') , '\n=========================================================')
else: else:
print('Error: ambiguous muts present, but extraction failed. Debug!' sys.exit('Error: ambiguous muts present, but extraction failed. Debug!')
, '\n===============================================================')
print('Counting no. of ambiguous muts...') print('Counting no. of ambiguous muts...')
@ -866,23 +829,23 @@ del(c1, c2, col_to_split1, col_to_split2, comp_gene_samples, dr_WF0, dr_df, dr_m
#dr_muts.to_csv('dr_muts.csv', header = True) #dr_muts.to_csv('dr_muts.csv', header = True)
#other_muts.to_csv('other_muts.csv', header = True) #other_muts.to_csv('other_muts.csv', header = True)
out_filename1 = gene.lower() + '_ambiguous_muts.csv' out_filename_ambig_muts = gene.lower() + '_ambiguous_muts.csv'
outfile1 = outdir + '/' + out_filename1 outfile_ambig_muts = outdir + '/' + out_filename_ambig_muts
print('Writing file: ambiguous muts' print('Writing file: ambiguous muts'
, '\nFilename:', outfile1) , '\nFilename:', outfile_ambig_muts)
#common_muts = ['gene_matchVal180Phe','gene_matchGln10Pro'] # test #common_muts = ['gene_matchVal180Phe','gene_matchGln10Pro'] # test
inspect = gene_LF1[gene_LF1['mutation'].isin(common_muts)] inspect = gene_LF1[gene_LF1['mutation'].isin(common_muts)]
inspect.to_csv(outfile1, index = False) inspect.to_csv(outfile_ambig_muts, index = False)
print('Finished writing:', out_filename1 print('Finished writing:', out_filename_ambig_muts
, '\nNo. of rows:', len(inspect) , '\nNo. of rows:', len(inspect)
, '\nNo. of cols:', len(inspect.columns) , '\nNo. of cols:', len(inspect.columns)
, '\nNo. of rows = no. of samples with the ambiguous muts present:' , '\nNo. of rows = no. of samples with the ambiguous muts present:'
, dr_muts.isin(other_muts).sum() + other_muts.isin(dr_muts).sum() , dr_muts.isin(other_muts).sum() + other_muts.isin(dr_muts).sum()
, '\n=============================================================') , '\n=============================================================')
del(out_filename1) del(out_filename_ambig_muts)
#%% end of data extraction and some files writing. Below are some more files writing. #%% end of data extraction and some files writing. Below are some more files writing.
#============================================================================= #=============================================================================
#%% Formatting df: read aa dict and pull relevant info #%% Formatting df: read aa dict and pull relevant info
@ -1173,44 +1136,40 @@ if snps_only.mutationinformation.isna().sum() == 0:
print ('PASS: NO NAs/missing entries for SNPs' print ('PASS: NO NAs/missing entries for SNPs'
, '\n===============================================================') , '\n===============================================================')
else: else:
print('FAIL: SNP has NA, Possible mapping issues from dict?' sys.exit('FAIL: SNP has NA, Possible mapping issues from dict?')
, '\nDebug please!'
, '\n=========================================================')
sys.exit()
out_filename2 = gene.lower() + '_mcsm_snps.csv' out_filename_mcsmsnps = gene.lower() + '_mcsm_snps.csv'
outfile2 = outdir + '/' + out_filename2 outfile_mcsmsnps = outdir + '/' + out_filename_mcsmsnps
print('Writing file: mCSM style muts' print('Writing file: mCSM style muts'
, '\nFilename:', outfile2 , '\nFilename:', outfile_mcsmsnps
, '\nmutation format (SNP): {WT}<POS>{MUT}' , '\nmutation format (SNP): {WT}<POS>{MUT}'
, '\nNo. of distinct muts:', len(snps_only) , '\nNo. of distinct muts:', len(snps_only)
, '\nNo. of distinct positions:', len(pos_only) , '\nNo. of distinct positions:', len(pos_only)
, '\n=============================================================') , '\n=============================================================')
snps_only.to_csv(outfile2, header = False, index = False) snps_only.to_csv(outfile_mcsmsnps, header = False, index = False)
print('Finished writing:', outfile2 print('Finished writing:', outfile_mcsmsnps
, '\nNo. of rows:', len(snps_only) , '\nNo. of rows:', len(snps_only)
, '\nNo. of cols:', len(snps_only.columns) , '\nNo. of cols:', len(snps_only.columns)
, '\n=============================================================') , '\n=============================================================')
del(out_filename2) del(out_filename_mcsmsnps)
#%% Write file: gene_metadata (i.e gene_LF1) #%% Write file: gene_metadata (i.e gene_LF1)
# where each row has UNIQUE mutations NOT unique sample ids # where each row has UNIQUE mutations NOT unique sample ids
out_filename3 = gene.lower() + '_metadata.csv' out_filename_metadata = gene.lower() + '_metadata.csv'
outfile3 = outdir + '/' + out_filename3 outfile_metadata = outdir + '/' + out_filename_metadata
print('Writing file: LF formatted data' print('Writing file: LF formatted data'
, '\nFilename:', out_filename3 , '\nFilename:', outfile_metadata
, '\nPath:', outdir
, '\n============================================================') , '\n============================================================')
gene_LF1.to_csv(outfile3, header = True, index = False) gene_LF1.to_csv(outfile_metadata, header = True, index = False)
print('Finished writing:', outfile3 print('Finished writing:', outfile_metadata
, '\nNo. of rows:', len(gene_LF1) , '\nNo. of rows:', len(gene_LF1)
, '\nNo. of cols:', len(gene_LF1.columns) , '\nNo. of cols:', len(gene_LF1.columns)
, '\n=============================================================') , '\n=============================================================')
del(out_filename3) del(out_filename_metadata)
#%% write file: mCSM style but with repitions for MSA and logo plots #%% write file: mCSM style but with repitions for MSA and logo plots
all_muts_msa = pd.DataFrame(gene_LF1['mutationinformation']) all_muts_msa = pd.DataFrame(gene_LF1['mutationinformation'])
@ -1237,27 +1196,24 @@ if all_muts_msa.mutationinformation.isna().sum() == 0:
print ('PASS: NO NAs/missing entries for SNPs' print ('PASS: NO NAs/missing entries for SNPs'
, '\n===============================================================') , '\n===============================================================')
else: else:
print('FAIL: SNP has NA, Possible mapping issues from dict?' sys.exit('FAIL: SNP has NA, Possible mapping issues from dict?')
, '\nDebug please!'
, '\n=========================================================')
out_filename4 = gene.lower() +'_all_muts_msa.csv' out_filename_msa = gene.lower() +'_all_muts_msa.csv'
outfile4 = outdir + '/' + out_filename4 outfile_msa = outdir + '/' + out_filename_msa
print('Writing file: mCSM style muts for msa', print('Writing file: mCSM style muts for msa',
'\nFilename:', outfile4, '\nFilename:', outfile_msa,
'\nmutation format (SNP): {WT}<POS>{MUT}', '\nmutation format (SNP): {WT}<POS>{MUT}',
'\nNo.of lines of msa:', len(all_muts_msa), '\nNo.of lines of msa:', len(all_muts_msa))
)
all_muts_msa_sorted.to_csv(outfile4, header = False, index = False) all_muts_msa_sorted.to_csv(outfile_msa, header = False, index = False)
print('Finished writing:', outfile4 print('Finished writing:', outfile_msa
, '\nNo. of rows:', len(all_muts_msa) , '\nNo. of rows:', len(all_muts_msa)
, '\nNo. of cols:', len(all_muts_msa.columns) , '\nNo. of cols:', len(all_muts_msa.columns)
, '\n=============================================================') , '\n=============================================================')
del(out_filename4) del(out_filename_msa)
#%% write file for mutational positions #%% write file for mutational positions
# count how many positions this corresponds to # count how many positions this corresponds to
@ -1272,23 +1228,22 @@ pos_only.position.dtype
# sort by position value # sort by position value
pos_only_sorted = pos_only.sort_values(by = 'position', ascending = True) pos_only_sorted = pos_only.sort_values(by = 'position', ascending = True)
out_filename5 = gene.lower() + '_mutational_positons.csv' out_filename_pos = gene.lower() + '_mutational_positons.csv'
outfile5 = outdir + '/' + out_filename5 outfile_pos = outdir + '/' + out_filename_pos
print('Writing file: mutational positions' print('Writing file: mutational positions'
, '\nNo. of distinct positions:', len(pos_only_sorted) , '\nNo. of distinct positions:', len(pos_only_sorted)
, '\nFilename:', out_filename5 , '\nFile:', outfile_pos
, '\nPath:', outdir
, '\n=============================================================') , '\n=============================================================')
pos_only_sorted.to_csv(outfile5, header = True, index = False) pos_only_sorted.to_csv(outfile_pos, header = True, index = False)
print('Finished writing:', outfile5 print('Finished writing:', outfile_pos
, '\nNo. of rows:', len(pos_only_sorted) , '\nNo. of rows:', len(pos_only_sorted)
, '\nNo. of cols:', len(pos_only_sorted.columns) , '\nNo. of cols:', len(pos_only_sorted.columns)
, '\n=============================================================') , '\n=============================================================')
del(out_filename5) del(out_filename_pos)
#======================================================================= #=======================================================================
print(u'\u2698' * 50, print(u'\u2698' * 50,
'\nEnd of script: Data extraction and writing files' '\nEnd of script: Data extraction and writing files'