scripts generating axis coloured subcols bp for PS
This commit is contained in:
parent
3cb33df009
commit
1e785a08a1
4 changed files with 685 additions and 0 deletions
240
scripts/plotting/subcols_axis_PS.R
Normal file
240
scripts/plotting/subcols_axis_PS.R
Normal file
|
@ -0,0 +1,240 @@
|
|||
getwd()
|
||||
setwd('~/git/LSHTM_analysis/scripts/plotting')
|
||||
getwd()
|
||||
|
||||
#########################################################
|
||||
# TASK:
|
||||
|
||||
#########################################################
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages and functions #
|
||||
########################################################################
|
||||
|
||||
#source('Header_TT.R')
|
||||
#source('barplot_colour_function.R')
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for PS #
|
||||
########################################################################
|
||||
#?????????????
|
||||
#
|
||||
########################################################
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = paste0(gene,'_p.')
|
||||
cat(gene_match)
|
||||
|
||||
#=============
|
||||
# directories
|
||||
#=============
|
||||
datadir = paste0('~/git/Data')
|
||||
indir = paste0(datadir, '/', drug, '/input')
|
||||
outdir = paste0('~/git/Data', '/', drug, '/output')
|
||||
|
||||
#======
|
||||
# input
|
||||
#======
|
||||
#in_filename = 'mcsm_complex1_normalised.csv'
|
||||
in_filename_params = paste0(tolower(gene), '_all_params.csv')
|
||||
infile_params = paste0(outdir, '/', in_filename_params)
|
||||
cat(paste0('Input file:', infile_params) )
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
|
||||
|
||||
#%%===============================================================
|
||||
###########################
|
||||
# Read file: struct params
|
||||
###########################
|
||||
cat('Reading struct params including mcsm:', in_filename_params)
|
||||
|
||||
my_df = read.csv(infile_params
|
||||
#, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
cat('Input dimensions:', dim(my_df))
|
||||
|
||||
# clear variables
|
||||
rm(in_filename_params, infile_params)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# check for duplicate mutations
|
||||
if ( length(unique(my_df$mutationinformation)) != length(my_df$mutationinformation)){
|
||||
cat(paste0('CAUTION:', ' Duplicate mutations identified'
|
||||
, '\nExtracting these...'))
|
||||
dup_muts = my_df[duplicated(my_df$mutationinformation),]
|
||||
dup_muts_nu = length(unique(dup_muts$mutationinformation))
|
||||
cat(paste0('\nDim of duplicate mutation df:', nrow(dup_muts)
|
||||
, '\nNo. of unique duplicate mutations:', dup_muts_nu
|
||||
, '\n\nExtracting df with unique mutations only'))
|
||||
my_df_u = my_df[!duplicated(my_df$mutationinformation),]
|
||||
}else{
|
||||
cat(paste0('No duplicate mutations detected'))
|
||||
my_df_u = my_df
|
||||
}
|
||||
|
||||
#upos = unique(my_df_u$position)
|
||||
cat('Dim of clean df:'); cat(dim(my_df_u))
|
||||
cat('\nNo. of unique mutational positions:'); cat(length(unique(my_df_u$position)))
|
||||
#======================================================
|
||||
# create a new df with unique position numbers and cols
|
||||
position = unique(my_df$position) #130
|
||||
position_cols = as.data.frame(position)
|
||||
|
||||
head(position_cols) ; tail(position_cols)
|
||||
|
||||
# specify active site residues and bg colour
|
||||
position = c(49, 51, 57, 71
|
||||
, 8, 96, 138
|
||||
, 13, 68
|
||||
, 103, 137
|
||||
, 133, 134) #13
|
||||
|
||||
lab_bg = rep(c("purple"
|
||||
, "yellow"
|
||||
, "cornflowerblue"
|
||||
, "blue"
|
||||
, "green"), times = c(4, 3, 2, 2, 2)
|
||||
)
|
||||
|
||||
# second bg colour for active site residues
|
||||
#lab_bg2 = rep(c("white"
|
||||
# , "green" , "white", "green"
|
||||
# , "white"
|
||||
# , "white"
|
||||
# , "white"), times = c(4
|
||||
# , 1, 1, 1
|
||||
# , 2
|
||||
# , 2
|
||||
# , 2)
|
||||
#)
|
||||
|
||||
#%%%%%%%%%
|
||||
# revised: leave the second box coloured as the first one incase there is no second colour
|
||||
#%%%%%%%%%
|
||||
lab_bg2 = rep(c("purple"
|
||||
, "green", "yellow", "green"
|
||||
, "cornflowerblue"
|
||||
, "blue"
|
||||
, "green"), times = c(4
|
||||
, 1, 1, 1
|
||||
, 2
|
||||
, 2
|
||||
, 2))
|
||||
|
||||
# fg colour for labels for active site residues
|
||||
lab_fg = rep(c("white"
|
||||
, "black"
|
||||
, "black"
|
||||
, "white"
|
||||
, "black"), times = c(4, 3, 2, 2, 2))
|
||||
|
||||
#%%%%%%%%%
|
||||
# revised: make the purple ones black
|
||||
# fg colour for labels for active site residues
|
||||
#%%%%%%%%%
|
||||
#lab_fg = rep(c("black"
|
||||
# , "black"
|
||||
# , "black"
|
||||
# , "white"
|
||||
# , "black"), times = c(4, 3, 2, 2, 2))
|
||||
|
||||
# combined df with active sites, bg and fg colours
|
||||
aa_cols_ref = data.frame(position
|
||||
, lab_bg
|
||||
, lab_bg2
|
||||
, lab_fg
|
||||
, stringsAsFactors = F) #13, 4
|
||||
|
||||
str(position_cols); class(position_cols)
|
||||
str(aa_cols_ref); class(aa_cols_ref)
|
||||
|
||||
# since position is int and numeric in the two dfs resp,
|
||||
# converting numeric to int for consistency
|
||||
aa_cols_ref$position = as.integer(aa_cols_ref$position)
|
||||
class(aa_cols_ref$position)
|
||||
|
||||
#===========
|
||||
# Merge 1: merging positions df (position_cols) and
|
||||
# active site cols (aa_cols_ref)
|
||||
# linking column: "position"
|
||||
# This is so you can have colours defined for all positions
|
||||
#===========
|
||||
head(position_cols$position); head(aa_cols_ref$position)
|
||||
|
||||
mut_pos_cols = merge(position_cols, aa_cols_ref
|
||||
, by = "position"
|
||||
, all.x = TRUE)
|
||||
|
||||
head(mut_pos_cols)
|
||||
# replace NA's
|
||||
# :column "lab_bg" with "white"
|
||||
# : column "lab_fg" with "black"
|
||||
mut_pos_cols$lab_bg[is.na(mut_pos_cols$lab_bg)] <- "white"
|
||||
mut_pos_cols$lab_bg2[is.na(mut_pos_cols$lab_bg2)] <- "white"
|
||||
mut_pos_cols$lab_fg[is.na(mut_pos_cols$lab_fg)] <- "black"
|
||||
head(mut_pos_cols)
|
||||
|
||||
#===========
|
||||
# Merge 2: Merge mut_pos_cols with mcsm df
|
||||
# Now combined the positions with aa colours with
|
||||
# the mcsm_data
|
||||
#===========
|
||||
# dfs to merge
|
||||
df0 = my_df # my_df_o
|
||||
df1 = mut_pos_cols
|
||||
|
||||
# check the column on which merge will be performed
|
||||
head(df0$position); tail(df0$position)
|
||||
head(df1$position); tail(df1$position)
|
||||
|
||||
# should now have 3 extra columns
|
||||
my_df = merge(df0, df1
|
||||
, by = "position"
|
||||
, all.x = TRUE)
|
||||
|
||||
# sanity check
|
||||
my_df[my_df$position == "49",]
|
||||
my_df[my_df$position == "13",]
|
||||
|
||||
rm(df0, df1)
|
||||
#===========
|
||||
# Merge 3: Merge mut_pos_cols with mcsm df_u
|
||||
# Now combined the positions with aa colours with
|
||||
# the mcsm_data
|
||||
#===========
|
||||
# dfs to merge
|
||||
df0 = my_df_u # my_df_u
|
||||
df1 = mut_pos_cols
|
||||
|
||||
# check the column on which merge will be performed
|
||||
head(df0$position); tail(df0$position)
|
||||
head(df1$position); tail(df1$position)
|
||||
|
||||
# should now have 3 extra columns
|
||||
my_df_u = merge(df0, df1
|
||||
, by = "position"
|
||||
, all.x = TRUE)
|
||||
|
||||
# sanity check
|
||||
my_df[my_df$position == "49",]
|
||||
my_df[my_df$position == "13",]
|
||||
|
||||
# clear variables
|
||||
rm(aa_cols_ref
|
||||
, df0
|
||||
, df1
|
||||
, position_cols
|
||||
, lab_bg
|
||||
, lab_bg2
|
||||
, lab_fg
|
||||
, position
|
||||
, dup_muts)
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue