scripts generating axis coloured subcols bp for PS
This commit is contained in:
parent
3cb33df009
commit
1e785a08a1
4 changed files with 685 additions and 0 deletions
206
scripts/plotting/barplots_subcolours_PS.R
Normal file
206
scripts/plotting/barplots_subcolours_PS.R
Normal file
|
@ -0,0 +1,206 @@
|
|||
getwd()
|
||||
setwd('~/git/LSHTM_analysis/scripts/plotting')
|
||||
getwd()
|
||||
|
||||
#########################################################
|
||||
# TASK:
|
||||
|
||||
#########################################################
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages and functions #
|
||||
########################################################################
|
||||
|
||||
source('Header_TT.R')
|
||||
source('barplot_colour_function.R')
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for PS #
|
||||
########################################################################
|
||||
#?????????????
|
||||
#
|
||||
########################################################
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = paste0(gene,'_p.')
|
||||
cat(gene_match)
|
||||
|
||||
#=============
|
||||
# directories
|
||||
#=============
|
||||
datadir = paste0('~/git/Data')
|
||||
indir = paste0(datadir, '/', drug, '/input')
|
||||
outdir = paste0('~/git/Data', '/', drug, '/output')
|
||||
|
||||
#======
|
||||
# input
|
||||
#======
|
||||
#in_filename = 'mcsm_complex1_normalised.csv'
|
||||
in_filename_params = paste0(tolower(gene), '_all_params.csv')
|
||||
infile_params = paste0(outdir, '/', in_filename_params)
|
||||
cat(paste0('Input file:', infile_params) )
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
subcols_bp_duet = 'barplot_subcols_DUET.svg'
|
||||
outPlot_subcols_bp_duet = paste0(outdir, '/plots/', subcols_bp_duet)
|
||||
|
||||
#%%===============================================================
|
||||
###########################
|
||||
# Read file: struct params
|
||||
###########################
|
||||
cat('Reading struct params including mcsm:', in_filename_params)
|
||||
|
||||
my_df = read.csv(infile_params
|
||||
#, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
cat('Input dimensions:', dim(my_df))
|
||||
|
||||
# clear variables
|
||||
rm(in_filename_params, infile_params)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# check for duplicate mutations
|
||||
if ( length(unique(my_df$mutationinformation)) != length(my_df$mutationinformation)){
|
||||
cat(paste0('CAUTION:', ' Duplicate mutations identified'
|
||||
, '\nExtracting these...'))
|
||||
dup_muts = my_df[duplicated(my_df$mutationinformation),]
|
||||
dup_muts_nu = length(unique(dup_muts$mutationinformation))
|
||||
cat(paste0('\nDim of duplicate mutation df:', nrow(dup_muts)
|
||||
, '\nNo. of unique duplicate mutations:', dup_muts_nu
|
||||
, '\n\nExtracting df with unique mutations only'))
|
||||
my_df_u = my_df[!duplicated(my_df$mutationinformation),]
|
||||
}else{
|
||||
cat(paste0('No duplicate mutations detected'))
|
||||
my_df_u = my_df
|
||||
}
|
||||
|
||||
#upos = unique(my_df_u$position)
|
||||
cat('Dim of clean df:'); cat(dim(my_df_u))
|
||||
cat('\nNo. of unique mutational positions:'); cat(length(unique(my_df_u$position)))
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
#===================
|
||||
# Data for plots
|
||||
#===================
|
||||
# REASSIGNMENT as necessary
|
||||
df = my_df_u
|
||||
|
||||
rm(my_df)
|
||||
|
||||
# sanity checks
|
||||
upos = unique(df$position)
|
||||
|
||||
# should be a factor
|
||||
is.factor(my_df$duet_outcome)
|
||||
#[1] TRUE
|
||||
|
||||
table(df$duet_outcome)
|
||||
|
||||
# should be -1 and 1
|
||||
min(df$duet_scaled)
|
||||
max(df$duet_scaled)
|
||||
|
||||
tapply(df$duet_scaled, df$duet_outcome, min)
|
||||
tapply(df$duet_scaled, df$duet_outcome, max)
|
||||
|
||||
#******************
|
||||
# generate plot
|
||||
#******************
|
||||
#==========================
|
||||
# Barplot with scores (unordered)
|
||||
# corresponds to duet_outcome
|
||||
# Stacked Barplot with colours: duet_outcome @ position coloured by
|
||||
# stability scores. This is a barplot where each bar corresponds
|
||||
# to a SNP and is coloured by its corresponding DUET stability value.
|
||||
# Normalised values (range between -1 and 1 ) to aid visualisation
|
||||
# NOTE: since barplot plots discrete values, colour = score, so number of
|
||||
# colours will be equal to the no. of unique normalised scores
|
||||
# rather than a continuous scale
|
||||
# will require generating the colour scale separately.
|
||||
#============================
|
||||
|
||||
# My colour FUNCTION: based on group and subgroup
|
||||
# in my case;
|
||||
# df = df
|
||||
# group = duet_outcome
|
||||
# subgroup = normalised score i.e duet_scaled
|
||||
|
||||
# check unique values in normalised data
|
||||
u = unique(df$duet_scaled)
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# Run this section if rounding is to be used
|
||||
n = 3
|
||||
df$duet_scaledR = round(df$duet_scaled, n)
|
||||
ur = unique(df$duet_scaledR)
|
||||
|
||||
# create an extra column called group which contains the "gp name and score"
|
||||
# so colours can be generated for each unique values in this column
|
||||
|
||||
#my_grp = df$duet_scaledR # rounding
|
||||
my_grp = df$duet_scaled # no rounding
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
df$group <- paste0(df$duet_outcome, "_", my_grp, sep = "")
|
||||
|
||||
# Call the function to create the palette based on the group defined above
|
||||
colours <- ColourPalleteMulti(df, "duet_outcome", "my_grp")
|
||||
print(paste0('Colour palette generated for: ', length(colours), ' colours'))
|
||||
my_title = "Protein stability (DUET)"
|
||||
|
||||
# axis label size
|
||||
my_xaxls = 13
|
||||
my_yaxls = 15
|
||||
|
||||
# axes text size
|
||||
my_xaxts = 15
|
||||
my_yaxts = 15
|
||||
|
||||
#******************
|
||||
# generate plot: NO axis colours
|
||||
# no ordering of x-axis
|
||||
#******************
|
||||
# plot name and location
|
||||
print(paste0('plot will be in:', outdir))
|
||||
bp_subcols_duet = "barplot_coloured_PS.svg"
|
||||
plot_bp_subcols_duet = paste0(outdir, "/plots/", bp_subcols_duet)
|
||||
print(paste0('plot name:', plot_bp_subcols_duet))
|
||||
|
||||
svg(plot_bp_subcols_duet, width = 26, height = 4)
|
||||
|
||||
g = ggplot(df, aes(factor(position, ordered = T)))
|
||||
outPlot = g +
|
||||
geom_bar(aes(fill = group), colour = "grey") +
|
||||
scale_fill_manual( values = colours
|
||||
, guide = 'none') +
|
||||
theme( axis.text.x = element_text(size = my_xaxls
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
, axis.text.y = element_text(size = my_yaxls
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_xaxts)
|
||||
, axis.title.y = element_text(size = my_yaxts ) ) +
|
||||
labs(title = my_title
|
||||
, x = "position"
|
||||
, y = "Frequency")
|
||||
|
||||
print(outPlot)
|
||||
dev.off()
|
||||
# for sanity and good practice
|
||||
rm(df)
|
||||
#======================= end of plot
|
||||
# axis colours labels
|
||||
# https://stackoverflow.com/questions/38862303/customize-ggplot2-axis-labels-with-different-colors
|
||||
# https://stackoverflow.com/questions/56543485/plot-coloured-boxes-around-axis-label
|
Loading…
Add table
Add a link
Reference in a new issue