scripts generating axis coloured subcols bp for PS
This commit is contained in:
parent
3cb33df009
commit
1e785a08a1
4 changed files with 685 additions and 0 deletions
27
scripts/plotting/barplot_colour_function.R
Normal file
27
scripts/plotting/barplot_colour_function.R
Normal file
|
@ -0,0 +1,27 @@
|
|||
#########################################################
|
||||
# 1b: Define function: coloured barplot by subgroup
|
||||
# LINK: https://stackoverflow.com/questions/49818271/stacked-barplot-with-colour-gradients-for-each-bar
|
||||
#########################################################
|
||||
|
||||
ColourPalleteMulti <- function(df, group, subgroup){
|
||||
|
||||
# Find how many colour categories to create and the number of colours in each
|
||||
categories <- aggregate(as.formula(paste(subgroup, group, sep="~" ))
|
||||
, df
|
||||
, function(x) length(unique(x)))
|
||||
# return(categories) }
|
||||
|
||||
category.start <- (scales::hue_pal(l = 100)(nrow(categories))) # Set the top of the colour pallete
|
||||
|
||||
category.end <- (scales::hue_pal(l = 40)(nrow(categories))) # set the bottom
|
||||
|
||||
#return(category.start); return(category.end)}
|
||||
|
||||
# Build Colour pallette
|
||||
colours <- unlist(lapply(1:nrow(categories),
|
||||
function(i){
|
||||
colorRampPalette(colors = c(category.start[i]
|
||||
, category.end[i]))(categories[i,2])}))
|
||||
return(colours)
|
||||
}
|
||||
#########################################################
|
206
scripts/plotting/barplots_subcolours_PS.R
Normal file
206
scripts/plotting/barplots_subcolours_PS.R
Normal file
|
@ -0,0 +1,206 @@
|
|||
getwd()
|
||||
setwd('~/git/LSHTM_analysis/scripts/plotting')
|
||||
getwd()
|
||||
|
||||
#########################################################
|
||||
# TASK:
|
||||
|
||||
#########################################################
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages and functions #
|
||||
########################################################################
|
||||
|
||||
source('Header_TT.R')
|
||||
source('barplot_colour_function.R')
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for PS #
|
||||
########################################################################
|
||||
#?????????????
|
||||
#
|
||||
########################################################
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = paste0(gene,'_p.')
|
||||
cat(gene_match)
|
||||
|
||||
#=============
|
||||
# directories
|
||||
#=============
|
||||
datadir = paste0('~/git/Data')
|
||||
indir = paste0(datadir, '/', drug, '/input')
|
||||
outdir = paste0('~/git/Data', '/', drug, '/output')
|
||||
|
||||
#======
|
||||
# input
|
||||
#======
|
||||
#in_filename = 'mcsm_complex1_normalised.csv'
|
||||
in_filename_params = paste0(tolower(gene), '_all_params.csv')
|
||||
infile_params = paste0(outdir, '/', in_filename_params)
|
||||
cat(paste0('Input file:', infile_params) )
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
subcols_bp_duet = 'barplot_subcols_DUET.svg'
|
||||
outPlot_subcols_bp_duet = paste0(outdir, '/plots/', subcols_bp_duet)
|
||||
|
||||
#%%===============================================================
|
||||
###########################
|
||||
# Read file: struct params
|
||||
###########################
|
||||
cat('Reading struct params including mcsm:', in_filename_params)
|
||||
|
||||
my_df = read.csv(infile_params
|
||||
#, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
cat('Input dimensions:', dim(my_df))
|
||||
|
||||
# clear variables
|
||||
rm(in_filename_params, infile_params)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# check for duplicate mutations
|
||||
if ( length(unique(my_df$mutationinformation)) != length(my_df$mutationinformation)){
|
||||
cat(paste0('CAUTION:', ' Duplicate mutations identified'
|
||||
, '\nExtracting these...'))
|
||||
dup_muts = my_df[duplicated(my_df$mutationinformation),]
|
||||
dup_muts_nu = length(unique(dup_muts$mutationinformation))
|
||||
cat(paste0('\nDim of duplicate mutation df:', nrow(dup_muts)
|
||||
, '\nNo. of unique duplicate mutations:', dup_muts_nu
|
||||
, '\n\nExtracting df with unique mutations only'))
|
||||
my_df_u = my_df[!duplicated(my_df$mutationinformation),]
|
||||
}else{
|
||||
cat(paste0('No duplicate mutations detected'))
|
||||
my_df_u = my_df
|
||||
}
|
||||
|
||||
#upos = unique(my_df_u$position)
|
||||
cat('Dim of clean df:'); cat(dim(my_df_u))
|
||||
cat('\nNo. of unique mutational positions:'); cat(length(unique(my_df_u$position)))
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
#===================
|
||||
# Data for plots
|
||||
#===================
|
||||
# REASSIGNMENT as necessary
|
||||
df = my_df_u
|
||||
|
||||
rm(my_df)
|
||||
|
||||
# sanity checks
|
||||
upos = unique(df$position)
|
||||
|
||||
# should be a factor
|
||||
is.factor(my_df$duet_outcome)
|
||||
#[1] TRUE
|
||||
|
||||
table(df$duet_outcome)
|
||||
|
||||
# should be -1 and 1
|
||||
min(df$duet_scaled)
|
||||
max(df$duet_scaled)
|
||||
|
||||
tapply(df$duet_scaled, df$duet_outcome, min)
|
||||
tapply(df$duet_scaled, df$duet_outcome, max)
|
||||
|
||||
#******************
|
||||
# generate plot
|
||||
#******************
|
||||
#==========================
|
||||
# Barplot with scores (unordered)
|
||||
# corresponds to duet_outcome
|
||||
# Stacked Barplot with colours: duet_outcome @ position coloured by
|
||||
# stability scores. This is a barplot where each bar corresponds
|
||||
# to a SNP and is coloured by its corresponding DUET stability value.
|
||||
# Normalised values (range between -1 and 1 ) to aid visualisation
|
||||
# NOTE: since barplot plots discrete values, colour = score, so number of
|
||||
# colours will be equal to the no. of unique normalised scores
|
||||
# rather than a continuous scale
|
||||
# will require generating the colour scale separately.
|
||||
#============================
|
||||
|
||||
# My colour FUNCTION: based on group and subgroup
|
||||
# in my case;
|
||||
# df = df
|
||||
# group = duet_outcome
|
||||
# subgroup = normalised score i.e duet_scaled
|
||||
|
||||
# check unique values in normalised data
|
||||
u = unique(df$duet_scaled)
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# Run this section if rounding is to be used
|
||||
n = 3
|
||||
df$duet_scaledR = round(df$duet_scaled, n)
|
||||
ur = unique(df$duet_scaledR)
|
||||
|
||||
# create an extra column called group which contains the "gp name and score"
|
||||
# so colours can be generated for each unique values in this column
|
||||
|
||||
#my_grp = df$duet_scaledR # rounding
|
||||
my_grp = df$duet_scaled # no rounding
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
df$group <- paste0(df$duet_outcome, "_", my_grp, sep = "")
|
||||
|
||||
# Call the function to create the palette based on the group defined above
|
||||
colours <- ColourPalleteMulti(df, "duet_outcome", "my_grp")
|
||||
print(paste0('Colour palette generated for: ', length(colours), ' colours'))
|
||||
my_title = "Protein stability (DUET)"
|
||||
|
||||
# axis label size
|
||||
my_xaxls = 13
|
||||
my_yaxls = 15
|
||||
|
||||
# axes text size
|
||||
my_xaxts = 15
|
||||
my_yaxts = 15
|
||||
|
||||
#******************
|
||||
# generate plot: NO axis colours
|
||||
# no ordering of x-axis
|
||||
#******************
|
||||
# plot name and location
|
||||
print(paste0('plot will be in:', outdir))
|
||||
bp_subcols_duet = "barplot_coloured_PS.svg"
|
||||
plot_bp_subcols_duet = paste0(outdir, "/plots/", bp_subcols_duet)
|
||||
print(paste0('plot name:', plot_bp_subcols_duet))
|
||||
|
||||
svg(plot_bp_subcols_duet, width = 26, height = 4)
|
||||
|
||||
g = ggplot(df, aes(factor(position, ordered = T)))
|
||||
outPlot = g +
|
||||
geom_bar(aes(fill = group), colour = "grey") +
|
||||
scale_fill_manual( values = colours
|
||||
, guide = 'none') +
|
||||
theme( axis.text.x = element_text(size = my_xaxls
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
, axis.text.y = element_text(size = my_yaxls
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_xaxts)
|
||||
, axis.title.y = element_text(size = my_yaxts ) ) +
|
||||
labs(title = my_title
|
||||
, x = "position"
|
||||
, y = "Frequency")
|
||||
|
||||
print(outPlot)
|
||||
dev.off()
|
||||
# for sanity and good practice
|
||||
rm(df)
|
||||
#======================= end of plot
|
||||
# axis colours labels
|
||||
# https://stackoverflow.com/questions/38862303/customize-ggplot2-axis-labels-with-different-colors
|
||||
# https://stackoverflow.com/questions/56543485/plot-coloured-boxes-around-axis-label
|
212
scripts/plotting/barplots_subcolours_aa_PS.R
Normal file
212
scripts/plotting/barplots_subcolours_aa_PS.R
Normal file
|
@ -0,0 +1,212 @@
|
|||
getwd()
|
||||
setwd('~/git/LSHTM_analysis/scripts/plotting')
|
||||
getwd()
|
||||
|
||||
#########################################################
|
||||
# TASK:
|
||||
|
||||
#########################################################
|
||||
|
||||
############################################################
|
||||
# 1: Installing and loading required packages and functions
|
||||
############################################################
|
||||
|
||||
#source('Header_TT.R')
|
||||
source('barplot_colour_function.R')
|
||||
|
||||
############################################################
|
||||
# 2: Read file: struct params data with columns containing
|
||||
# colours for axis labels
|
||||
############################################################
|
||||
#source("subcols_axis.R")
|
||||
source("subcols_axis_PS.R")
|
||||
|
||||
# this should return
|
||||
# mut_pos_cols
|
||||
# my_df
|
||||
# my_df_u: df with unique mutations
|
||||
|
||||
# clear excess variable
|
||||
# "mut_pos_cols" is just for inspection in case you need to cross check
|
||||
# position numbers and colours
|
||||
# open file from deskptop ("sample_axis_cols") for cross checking
|
||||
|
||||
table(mut_pos_cols$lab_bg)
|
||||
sum( table(mut_pos_cols$lab_bg) ) == nrow(mut_pos_cols) # should be True
|
||||
|
||||
table(mut_pos_cols$lab_bg2)
|
||||
sum( table(mut_pos_cols$lab_bg2) ) == nrow(mut_pos_cols) # should be True
|
||||
|
||||
table(mut_pos_cols$lab_fg)
|
||||
sum( table(mut_pos_cols$lab_fg) ) == nrow(mut_pos_cols) # should be True
|
||||
|
||||
# very important!
|
||||
my_axis_colours = mut_pos_cols$lab_fg
|
||||
|
||||
# now clear mut_pos_cols
|
||||
rm(mut_pos_cols)
|
||||
|
||||
###########################
|
||||
# 2: Plot: DUET scores
|
||||
###########################
|
||||
#==========================
|
||||
# Plot 2: Barplot with scores (unordered)
|
||||
# corresponds to duet_outcome
|
||||
# Stacked Barplot with colours: duet_outcome @ position coloured by
|
||||
# stability scores. This is a barplot where each bar corresponds
|
||||
# to a SNP and is coloured by its corresponding DUET stability value.
|
||||
# Normalised values (range between -1 and 1 ) to aid visualisation
|
||||
# NOTE: since barplot plots discrete values, colour = score, so number of
|
||||
# colours will be equal to the no. of unique normalised scores
|
||||
# rather than a continuous scale
|
||||
# will require generating the colour scale separately.
|
||||
#============================
|
||||
# sanity checks
|
||||
upos = unique(my_df$position)
|
||||
|
||||
table(my_df$duet_outcome)
|
||||
table(my_df_u$duet_outcome)
|
||||
|
||||
#===========================
|
||||
# Data preparation for plots
|
||||
#===========================
|
||||
# REASSIGNMENT as necessary
|
||||
df <- my_df_u
|
||||
rm(my_df, my_df_u)
|
||||
|
||||
# add frequency of positions
|
||||
library(data.table)
|
||||
setDT(df)[, pos_count := .N, by = .(position)]
|
||||
|
||||
# this is cummulative
|
||||
table(df$pos_count)
|
||||
|
||||
# use group by on this
|
||||
library(dplyr)
|
||||
snpsBYpos_df <- df %>%
|
||||
group_by(position) %>%
|
||||
summarize(snpsBYpos = mean(pos_count))
|
||||
|
||||
table(snpsBYpos_df$snpsBYpos)
|
||||
|
||||
snp_count = sort(unique(snpsBYpos_df$snpsBYpos))
|
||||
|
||||
# sanity checks
|
||||
# should be a factor
|
||||
is.factor(df$duet_outcome)
|
||||
#TRUE
|
||||
|
||||
table(df$duet_outcome)
|
||||
|
||||
# should be -1 and 1
|
||||
min(df$duet_scaled)
|
||||
max(df$duet_scaled)
|
||||
|
||||
# sanity checks
|
||||
# very important!!!!
|
||||
tapply(df$duet_scaled, df$duet_outcome, min)
|
||||
|
||||
tapply(df$duet_scaled, df$duet_outcome, max)
|
||||
|
||||
# My colour FUNCTION: based on group and subgroup
|
||||
# in my case;
|
||||
# df = df
|
||||
# group = duet_outcome
|
||||
# subgroup = normalised score i.e duet_scaled
|
||||
|
||||
# check unique values in normalised data
|
||||
u = unique(df$duet_scaled)
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# Run this section if rounding is to be used
|
||||
# specify number for rounding
|
||||
n = 3
|
||||
df$duet_scaledR = round(df$duet_scaled, n)
|
||||
ur = unique(df$duet_scaledR)
|
||||
|
||||
# create an extra column called group which contains the "gp name and score"
|
||||
# so colours can be generated for each unique values in this column
|
||||
|
||||
#my_grp = df$duet_scaledR # rounding
|
||||
my_grp = df$duet_scaled # no rounding
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
df$group <- paste0(df$duet_outcome, "_", my_grp, sep = "")
|
||||
|
||||
# Call the function to create the palette based on the group defined above
|
||||
colours <- ColourPalleteMulti(df, "duet_outcome", "my_grp")
|
||||
print(paste0('Colour palette generated for: ', length(colours), ' colours'))
|
||||
my_title = "Protein stability (DUET)"
|
||||
|
||||
#========================
|
||||
# plot with axis colours
|
||||
#========================
|
||||
class(df$lab_bg)
|
||||
|
||||
# define cartesian coord
|
||||
my_xlim = length(unique(df$position)); my_xlim
|
||||
|
||||
# axis label size
|
||||
my_xals = 18
|
||||
my_yals = 18
|
||||
|
||||
# axes text size
|
||||
my_xats = 14
|
||||
my_yats = 18
|
||||
|
||||
#******************
|
||||
# generate plot: with axis colours
|
||||
#******************
|
||||
# plot name and location
|
||||
# outdir/ (should be imported from reading file)
|
||||
print(paste0('plot will be in:', outdir))
|
||||
|
||||
bp_aa_subcols_duet = "barplot_acoloured_PS.svg"
|
||||
plot_bp_aa_subcols_duet = paste0(outdir, "/plots/", bp_aa_subcols_duet)
|
||||
|
||||
print(paste0('plot name:', plot_bp_aa_subcols_duet))
|
||||
|
||||
svg(plot_bp_aa_subcols_duet, width = 26, height = 4)
|
||||
|
||||
g = ggplot(df, aes(factor(position, ordered = T)))
|
||||
|
||||
outPlot = g +
|
||||
coord_cartesian(xlim = c(1, my_xlim)
|
||||
#, ylim = c(0, 6)
|
||||
, ylim = c(0, max(snp_count))
|
||||
, clip = "off") +
|
||||
geom_bar(aes(fill = group), colour = "grey") +
|
||||
scale_fill_manual(values = colours
|
||||
, guide = 'none') +
|
||||
geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
|
||||
, fill = df$lab_bg) +
|
||||
geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
|
||||
, fill = df$lab_bg2) +
|
||||
|
||||
# Here it's important to specify that your axis goes from 1 to max number of levels
|
||||
theme(axis.text.x = element_text(size = my_xats
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4
|
||||
, colour = my_axis_colours)
|
||||
, axis.text.y = element_text(size = my_yats
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_xals)
|
||||
, axis.title.y = element_text(size = my_yals )
|
||||
, axis.ticks.x = element_blank()) +
|
||||
labs(title = ""
|
||||
, x = "position"
|
||||
, y = "Frequency")
|
||||
|
||||
print(outPlot)
|
||||
dev.off()
|
||||
|
||||
#!!!!!!!!!!!!!!!!
|
||||
#Warning message:
|
||||
# Vectorized input to `element_text()` is not officially supported.
|
||||
#Results may be unexpected or may change in future versions of ggplot2.
|
||||
#!!!!!!!!!!!!!!!!!
|
||||
|
||||
# for sanity and good practice
|
||||
#rm(df)
|
240
scripts/plotting/subcols_axis_PS.R
Normal file
240
scripts/plotting/subcols_axis_PS.R
Normal file
|
@ -0,0 +1,240 @@
|
|||
getwd()
|
||||
setwd('~/git/LSHTM_analysis/scripts/plotting')
|
||||
getwd()
|
||||
|
||||
#########################################################
|
||||
# TASK:
|
||||
|
||||
#########################################################
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages and functions #
|
||||
########################################################################
|
||||
|
||||
#source('Header_TT.R')
|
||||
#source('barplot_colour_function.R')
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for PS #
|
||||
########################################################################
|
||||
#?????????????
|
||||
#
|
||||
########################################################
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = paste0(gene,'_p.')
|
||||
cat(gene_match)
|
||||
|
||||
#=============
|
||||
# directories
|
||||
#=============
|
||||
datadir = paste0('~/git/Data')
|
||||
indir = paste0(datadir, '/', drug, '/input')
|
||||
outdir = paste0('~/git/Data', '/', drug, '/output')
|
||||
|
||||
#======
|
||||
# input
|
||||
#======
|
||||
#in_filename = 'mcsm_complex1_normalised.csv'
|
||||
in_filename_params = paste0(tolower(gene), '_all_params.csv')
|
||||
infile_params = paste0(outdir, '/', in_filename_params)
|
||||
cat(paste0('Input file:', infile_params) )
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
|
||||
|
||||
#%%===============================================================
|
||||
###########################
|
||||
# Read file: struct params
|
||||
###########################
|
||||
cat('Reading struct params including mcsm:', in_filename_params)
|
||||
|
||||
my_df = read.csv(infile_params
|
||||
#, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
cat('Input dimensions:', dim(my_df))
|
||||
|
||||
# clear variables
|
||||
rm(in_filename_params, infile_params)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# check for duplicate mutations
|
||||
if ( length(unique(my_df$mutationinformation)) != length(my_df$mutationinformation)){
|
||||
cat(paste0('CAUTION:', ' Duplicate mutations identified'
|
||||
, '\nExtracting these...'))
|
||||
dup_muts = my_df[duplicated(my_df$mutationinformation),]
|
||||
dup_muts_nu = length(unique(dup_muts$mutationinformation))
|
||||
cat(paste0('\nDim of duplicate mutation df:', nrow(dup_muts)
|
||||
, '\nNo. of unique duplicate mutations:', dup_muts_nu
|
||||
, '\n\nExtracting df with unique mutations only'))
|
||||
my_df_u = my_df[!duplicated(my_df$mutationinformation),]
|
||||
}else{
|
||||
cat(paste0('No duplicate mutations detected'))
|
||||
my_df_u = my_df
|
||||
}
|
||||
|
||||
#upos = unique(my_df_u$position)
|
||||
cat('Dim of clean df:'); cat(dim(my_df_u))
|
||||
cat('\nNo. of unique mutational positions:'); cat(length(unique(my_df_u$position)))
|
||||
#======================================================
|
||||
# create a new df with unique position numbers and cols
|
||||
position = unique(my_df$position) #130
|
||||
position_cols = as.data.frame(position)
|
||||
|
||||
head(position_cols) ; tail(position_cols)
|
||||
|
||||
# specify active site residues and bg colour
|
||||
position = c(49, 51, 57, 71
|
||||
, 8, 96, 138
|
||||
, 13, 68
|
||||
, 103, 137
|
||||
, 133, 134) #13
|
||||
|
||||
lab_bg = rep(c("purple"
|
||||
, "yellow"
|
||||
, "cornflowerblue"
|
||||
, "blue"
|
||||
, "green"), times = c(4, 3, 2, 2, 2)
|
||||
)
|
||||
|
||||
# second bg colour for active site residues
|
||||
#lab_bg2 = rep(c("white"
|
||||
# , "green" , "white", "green"
|
||||
# , "white"
|
||||
# , "white"
|
||||
# , "white"), times = c(4
|
||||
# , 1, 1, 1
|
||||
# , 2
|
||||
# , 2
|
||||
# , 2)
|
||||
#)
|
||||
|
||||
#%%%%%%%%%
|
||||
# revised: leave the second box coloured as the first one incase there is no second colour
|
||||
#%%%%%%%%%
|
||||
lab_bg2 = rep(c("purple"
|
||||
, "green", "yellow", "green"
|
||||
, "cornflowerblue"
|
||||
, "blue"
|
||||
, "green"), times = c(4
|
||||
, 1, 1, 1
|
||||
, 2
|
||||
, 2
|
||||
, 2))
|
||||
|
||||
# fg colour for labels for active site residues
|
||||
lab_fg = rep(c("white"
|
||||
, "black"
|
||||
, "black"
|
||||
, "white"
|
||||
, "black"), times = c(4, 3, 2, 2, 2))
|
||||
|
||||
#%%%%%%%%%
|
||||
# revised: make the purple ones black
|
||||
# fg colour for labels for active site residues
|
||||
#%%%%%%%%%
|
||||
#lab_fg = rep(c("black"
|
||||
# , "black"
|
||||
# , "black"
|
||||
# , "white"
|
||||
# , "black"), times = c(4, 3, 2, 2, 2))
|
||||
|
||||
# combined df with active sites, bg and fg colours
|
||||
aa_cols_ref = data.frame(position
|
||||
, lab_bg
|
||||
, lab_bg2
|
||||
, lab_fg
|
||||
, stringsAsFactors = F) #13, 4
|
||||
|
||||
str(position_cols); class(position_cols)
|
||||
str(aa_cols_ref); class(aa_cols_ref)
|
||||
|
||||
# since position is int and numeric in the two dfs resp,
|
||||
# converting numeric to int for consistency
|
||||
aa_cols_ref$position = as.integer(aa_cols_ref$position)
|
||||
class(aa_cols_ref$position)
|
||||
|
||||
#===========
|
||||
# Merge 1: merging positions df (position_cols) and
|
||||
# active site cols (aa_cols_ref)
|
||||
# linking column: "position"
|
||||
# This is so you can have colours defined for all positions
|
||||
#===========
|
||||
head(position_cols$position); head(aa_cols_ref$position)
|
||||
|
||||
mut_pos_cols = merge(position_cols, aa_cols_ref
|
||||
, by = "position"
|
||||
, all.x = TRUE)
|
||||
|
||||
head(mut_pos_cols)
|
||||
# replace NA's
|
||||
# :column "lab_bg" with "white"
|
||||
# : column "lab_fg" with "black"
|
||||
mut_pos_cols$lab_bg[is.na(mut_pos_cols$lab_bg)] <- "white"
|
||||
mut_pos_cols$lab_bg2[is.na(mut_pos_cols$lab_bg2)] <- "white"
|
||||
mut_pos_cols$lab_fg[is.na(mut_pos_cols$lab_fg)] <- "black"
|
||||
head(mut_pos_cols)
|
||||
|
||||
#===========
|
||||
# Merge 2: Merge mut_pos_cols with mcsm df
|
||||
# Now combined the positions with aa colours with
|
||||
# the mcsm_data
|
||||
#===========
|
||||
# dfs to merge
|
||||
df0 = my_df # my_df_o
|
||||
df1 = mut_pos_cols
|
||||
|
||||
# check the column on which merge will be performed
|
||||
head(df0$position); tail(df0$position)
|
||||
head(df1$position); tail(df1$position)
|
||||
|
||||
# should now have 3 extra columns
|
||||
my_df = merge(df0, df1
|
||||
, by = "position"
|
||||
, all.x = TRUE)
|
||||
|
||||
# sanity check
|
||||
my_df[my_df$position == "49",]
|
||||
my_df[my_df$position == "13",]
|
||||
|
||||
rm(df0, df1)
|
||||
#===========
|
||||
# Merge 3: Merge mut_pos_cols with mcsm df_u
|
||||
# Now combined the positions with aa colours with
|
||||
# the mcsm_data
|
||||
#===========
|
||||
# dfs to merge
|
||||
df0 = my_df_u # my_df_u
|
||||
df1 = mut_pos_cols
|
||||
|
||||
# check the column on which merge will be performed
|
||||
head(df0$position); tail(df0$position)
|
||||
head(df1$position); tail(df1$position)
|
||||
|
||||
# should now have 3 extra columns
|
||||
my_df_u = merge(df0, df1
|
||||
, by = "position"
|
||||
, all.x = TRUE)
|
||||
|
||||
# sanity check
|
||||
my_df[my_df$position == "49",]
|
||||
my_df[my_df$position == "13",]
|
||||
|
||||
# clear variables
|
||||
rm(aa_cols_ref
|
||||
, df0
|
||||
, df1
|
||||
, position_cols
|
||||
, lab_bg
|
||||
, lab_bg2
|
||||
, lab_fg
|
||||
, position
|
||||
, dup_muts)
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue