tody scracth script for various OR calcs
This commit is contained in:
parent
18998092f4
commit
1e43ca8136
1 changed files with 104 additions and 184 deletions
|
@ -154,14 +154,19 @@ cat(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(gene_
|
||||||
#3) modified chisq.test
|
#3) modified chisq.test
|
||||||
#4) logistic
|
#4) logistic
|
||||||
#5) adjusted logistic?
|
#5) adjusted logistic?
|
||||||
#6) kinship (separate script)
|
|
||||||
|
|
||||||
#======================================
|
#======================================
|
||||||
|
#########################
|
||||||
|
# custom chisq function:
|
||||||
|
# To calculate OR
|
||||||
|
#########################
|
||||||
|
#i = "pnca_p.trp68gly"
|
||||||
|
#mut = grepl(i,raw_data$all_muts_gene)
|
||||||
|
#dst = raw_data[[drug]]
|
||||||
|
|
||||||
################# modified chisq OR
|
|
||||||
# Define OR function
|
|
||||||
#x = as.numeric(mut)
|
#x = as.numeric(mut)
|
||||||
#y = dst
|
#y = dst
|
||||||
|
|
||||||
custom_chisq_or = function(x,y){
|
custom_chisq_or = function(x,y){
|
||||||
tab = as.matrix(table(x,y))
|
tab = as.matrix(table(x,y))
|
||||||
a = tab[2,2]
|
a = tab[2,2]
|
||||||
|
@ -176,9 +181,10 @@ custom_chisq_or = function(x,y){
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#========================
|
#======================================
|
||||||
|
#==============
|
||||||
# TEST WITH ONE
|
# TEST WITH ONE
|
||||||
#========================
|
#==============
|
||||||
i = "pnca_p.trp68gly"
|
i = "pnca_p.trp68gly"
|
||||||
i = "pnca_p.gln10pro"
|
i = "pnca_p.gln10pro"
|
||||||
i = "pnca_p.leu159arg"
|
i = "pnca_p.leu159arg"
|
||||||
|
@ -207,84 +213,93 @@ table(sid)
|
||||||
# 3X2 table
|
# 3X2 table
|
||||||
table(mut, dst, sid)
|
table(mut, dst, sid)
|
||||||
|
|
||||||
#============================
|
#===================================================
|
||||||
# compare OR
|
# compare ORs from different calcs
|
||||||
|
|
||||||
|
#1) chisq
|
||||||
chisq.test(table(mut,dst))
|
chisq.test(table(mut,dst))
|
||||||
chisq.test(table(mut,dst)) $ statistic
|
chisq_estimate = chisq.test(table(mut,dst))$statistic
|
||||||
|
est_chisq = chisq_estimate[[1]]; print(paste0('chi sq estimate:', est_chisq))# numeric part only
|
||||||
|
pval_chisq = chisq.test(table(mut,dst))$p.value; print(paste0('pvalue:', pval_chisq))
|
||||||
|
|
||||||
f = chisq.test(table(mut,dst)) $ statistic
|
|
||||||
chisq.test(dst, mut) $ statistic
|
|
||||||
|
|
||||||
|
#2) fisher
|
||||||
fisher.test(table(mut, dst))
|
fisher.test(table(mut, dst))
|
||||||
fisher.test(table(mut, dst))$p.value
|
fisher.test(table(mut, dst))$p.value
|
||||||
fisher.test(table(mut, dst))$estimate
|
est_fisher = fisher.test(table(mut, dst))$estimate
|
||||||
logistic_chisq_or(mut,dst)
|
or_fisher = est_fisher[[1]]; print(paste0('OR fisher:', or_fisher))# numeric part only
|
||||||
|
pval_fisher = fisher.test(table(mut, dst))$p.value; print(paste0('pval fisher:', pval_fisher))
|
||||||
|
|
||||||
# logistic or
|
|
||||||
|
#3) custom chisq
|
||||||
|
or_mychisq = custom_chisq_or(mut,dst)
|
||||||
|
|
||||||
|
#4) logistic
|
||||||
summary(model<-glm(dst ~ mut, family = binomial))
|
summary(model<-glm(dst ~ mut, family = binomial))
|
||||||
or_logistic = exp(summary(model)$coefficients[2,1]); print(or_logistic)
|
|
||||||
pval_logistic_maxit = summary(model)$coefficients[2,4]; print(pval_logistic_maxit)
|
or_logistic = exp(summary(model)$coefficients[2,1]); print(paste0('OR logistic:', or_logistic))
|
||||||
|
pval_logistic = summary(model)$coefficients[2,4]; print(paste0('pval logistic:', pval_logistic))
|
||||||
|
|
||||||
# extract SE of the logistic model for a given snp
|
# extract SE of the logistic model for a given snp
|
||||||
logistic_se = summary(model)$coefficients[2,2]
|
logistic_se = summary(model)$coefficients[2,2]; print(paste0('SE:', logistic_se))
|
||||||
print(paste0('SE:', logistic_se))
|
|
||||||
|
|
||||||
# extract Z of the logistic model for a given snp
|
# extract Z of the logistic model for a given snp
|
||||||
logistic_zval = summary(model)$coefficients[2,3]
|
logistic_zval = summary(model)$coefficients[2,3]; print(paste0('Z-value:', logistic_zval))
|
||||||
print(paste0('Z-value:', logistic_zval))
|
|
||||||
|
|
||||||
|
|
||||||
# extract confint interval of snp (2 steps, since the output is a named number)
|
# extract confint interval of snp (2 steps, since the output is a named number)
|
||||||
ci_mod = exp(confint(model))[2,]
|
ci_mod = exp(confint(model))[2,]; print(paste0('CI:', ci_mod))
|
||||||
print(paste0('CI:', ci_mod))
|
|
||||||
#logistic_ci = paste(ci_mod[["2.5 %"]], ",", ci_mod[["97.5 %"]])
|
#logistic_ci = paste(ci_mod[["2.5 %"]], ",", ci_mod[["97.5 %"]])
|
||||||
|
|
||||||
logistic_ci_lower = ci_mod[["2.5 %"]]
|
logistic_ci_lower = ci_mod[["2.5 %"]]; print(paste0('CI_lower:', logistic_ci_lower))
|
||||||
logistic_ci_upper = ci_mod[["97.5 %"]]
|
logistic_ci_upper = ci_mod[["97.5 %"]]; print(paste0('CI_upper:', logistic_ci_upper))
|
||||||
|
|
||||||
print(paste0('CI_lower:', logistic_ci_lower))
|
|
||||||
print(paste0('CI_upper:', logistic_ci_upper))
|
|
||||||
|
|
||||||
|
|
||||||
# adjusted logistic or: doesn't seem to make a difference
|
# adjusted logistic or: doesn't seem to make a difference
|
||||||
summary(model2<-glm(dst ~ mut + sid, family = binomial))
|
summary(model2<-glm(dst ~ mut + sid, family = binomial))
|
||||||
or_logistic2 = exp(summary(model2)$coefficients[2,1]); print(or_logistic2)
|
or_logistic2 = exp(summary(model2)$coefficients[2,1]); print(paste0('Adjusted OR logistic:', or_logistic2))
|
||||||
pval_logistic2 = summary(model2)$coefficients[2,4]; print(pval_logistic2)
|
pval_logistic2 = summary(model2)$coefficients[2,4]; print(paste0('Adjusted pval logistic:',pval_logistic2))
|
||||||
|
|
||||||
#============ looping with sapply
|
# print all output
|
||||||
#####################
|
writeLines(c(paste0("mutation:", i)
|
||||||
# iterate: subset
|
, paste0("=========================")
|
||||||
#####################
|
, paste0("OR logistic:", or_logistic,"--->", "pval logistic:", pval_logistic )
|
||||||
|
, paste0("OR adjusted logistic:", or_logistic2,"--->", "pval adjusted logistic:", pval_logistic2)
|
||||||
snps_test = c("pnca_p.trp68gly", "pnca_p.leu4ser", "pnca_p.leu159arg","pnca_p.his57arg" )
|
, paste0("OR fisher:", or_fisher, "--->","pval fisher:", pval_fisher )
|
||||||
|
, paste0("OR custom chisq:", or_mychisq, "--->","pval fisher:", pval_fisher )
|
||||||
snps = snps_test[1:4]
|
, paste0("Chisq estimate:", est_chisq, "--->","pval chisq:", pval_chisq)))
|
||||||
|
#%%========================================================
|
||||||
|
# looping with sapply: a subset of mutations
|
||||||
|
#%%========================================================
|
||||||
|
|
||||||
|
snps = c("pnca_p.trp68gly", "pnca_p.leu4ser", "pnca_p.leu159arg","pnca_p.his57arg" )
|
||||||
|
#snps = snps_test[1:2]
|
||||||
snps
|
snps
|
||||||
|
|
||||||
|
# custom chisq
|
||||||
ors = sapply(snps,function(m){
|
ors = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
logistic_chisq_or(mut,dst)
|
custom_chisq_or(mut,dst)
|
||||||
})
|
})
|
||||||
|
head(ors)
|
||||||
|
|
||||||
ors
|
# pvalue fisher, to be used with custom chisq
|
||||||
|
|
||||||
pvals = sapply(snps,function(m){
|
pvals = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
fisher.test(mut,dst)$p.value
|
fisher.test(mut,dst)$p.value
|
||||||
})
|
})
|
||||||
|
head(pvals)
|
||||||
|
|
||||||
pvals
|
# allele frequency
|
||||||
|
|
||||||
afs = sapply(snps,function(m){
|
afs = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
mean(mut)
|
mean(mut)
|
||||||
})
|
})
|
||||||
|
head(afs)
|
||||||
|
|
||||||
afs
|
# logistic reg parameters: individual sapply
|
||||||
|
|
||||||
## logistic or
|
#--------------
|
||||||
|
## logistci or
|
||||||
|
#--------------
|
||||||
ors_logistic = sapply(snps,function(m){
|
ors_logistic = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
model<-glm(dst ~ mut, family = binomial)
|
model<-glm(dst ~ mut, family = binomial)
|
||||||
|
@ -294,7 +309,9 @@ afs
|
||||||
ors_logistic
|
ors_logistic
|
||||||
head(ors_logistic); head(names(ors_logistic))
|
head(ors_logistic); head(names(ors_logistic))
|
||||||
|
|
||||||
|
#-------------------
|
||||||
## logistic p-value
|
## logistic p-value
|
||||||
|
#--------------
|
||||||
pvals_logistic = sapply(snps,function(m){
|
pvals_logistic = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
model<-glm(dst ~ mut , family = binomial)
|
model<-glm(dst ~ mut , family = binomial)
|
||||||
|
@ -303,7 +320,9 @@ pvals_logistic = sapply(snps,function(m){
|
||||||
|
|
||||||
head(pvals_logistic); head(names(pvals_logistic))
|
head(pvals_logistic); head(names(pvals_logistic))
|
||||||
|
|
||||||
|
#--------------
|
||||||
## logistic se
|
## logistic se
|
||||||
|
#--------------
|
||||||
se_logistic = sapply(snps,function(m){
|
se_logistic = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
model<-glm(dst ~ mut , family = binomial)
|
model<-glm(dst ~ mut , family = binomial)
|
||||||
|
@ -312,8 +331,9 @@ se_logistic = sapply(snps,function(m){
|
||||||
|
|
||||||
head(se_logistic); head(names(se_logistic))
|
head(se_logistic); head(names(se_logistic))
|
||||||
|
|
||||||
|
#--------------
|
||||||
## logistic z-value
|
## logistic z-value
|
||||||
|
#--------------
|
||||||
zval_logistic = sapply(gene_snps_unique,function(m){
|
zval_logistic = sapply(gene_snps_unique,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
model<-glm(dst ~ mut , family = binomial)
|
model<-glm(dst ~ mut , family = binomial)
|
||||||
|
@ -321,8 +341,9 @@ zval_logistic = sapply(gene_snps_unique,function(m){
|
||||||
})
|
})
|
||||||
|
|
||||||
head(zval_logistic); head(names(zval_logistic))
|
head(zval_logistic); head(names(zval_logistic))
|
||||||
|
#--------------
|
||||||
## logistic ci - lower bound
|
## logistic ci - lower bound
|
||||||
|
#--------------
|
||||||
ci_lb_logistic = sapply(snps,function(m){
|
ci_lb_logistic = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
model<-glm(dst ~ mut , family = binomial)
|
model<-glm(dst ~ mut , family = binomial)
|
||||||
|
@ -331,8 +352,9 @@ ci_lb_logistic = sapply(snps,function(m){
|
||||||
})
|
})
|
||||||
|
|
||||||
head(ci_lb_logistic); head(names(ci_lb_logistic))
|
head(ci_lb_logistic); head(names(ci_lb_logistic))
|
||||||
|
#--------------
|
||||||
## logistic ci - upper bound
|
## logistic ci - upper bound
|
||||||
|
#--------------
|
||||||
ci_ub_logistic = sapply(snps,function(m){
|
ci_ub_logistic = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
model<-glm(dst ~ mut , family = binomial)
|
model<-glm(dst ~ mut , family = binomial)
|
||||||
|
@ -343,7 +365,9 @@ ci_ub_logistic = sapply(snps,function(m){
|
||||||
|
|
||||||
head(ci_ub_logistic); head(names(ci_ub_logistic))
|
head(ci_ub_logistic); head(names(ci_ub_logistic))
|
||||||
|
|
||||||
# logistic adj # Doesn't seem to make a difference
|
#--------------
|
||||||
|
# adjusted logistic with sample id: Doesn't seem to make a difference
|
||||||
|
#--------------
|
||||||
logistic_ors2 = sapply(snps,function(m){
|
logistic_ors2 = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
c = raw_data$id[mut]
|
c = raw_data$id[mut]
|
||||||
|
@ -352,38 +376,34 @@ logistic_ors2 = sapply(snps,function(m){
|
||||||
or_logistic2 = exp(summary(model2)$coefficients[2,1])
|
or_logistic2 = exp(summary(model2)$coefficients[2,1])
|
||||||
#pval_logistic2 = summary(model2)$coefficients[2,4]
|
#pval_logistic2 = summary(model2)$coefficients[2,4]
|
||||||
})
|
})
|
||||||
|
|
||||||
logistic_ors2
|
|
||||||
|
|
||||||
or_logistic2; pval_logistic2
|
|
||||||
|
|
||||||
head(logistic_ors)
|
head(logistic_ors)
|
||||||
#===========================================================
|
|
||||||
#%%
|
|
||||||
# sapply with multiple values
|
|
||||||
|
|
||||||
#https://gist.github.com/primaryobjects/33adabc337edd67b4a8d
|
#=!=!=!=!=!=!=!=!=!=!=!=!=!=!
|
||||||
|
# COMMENT: individual sapply seem wasteful
|
||||||
snps_test = c("pnca_p.trp68gly", "pnca_p.leu4ser", "pnca_p.leu159arg","pnca_p.his57arg" )
|
#=!=!=!=!=!=!=!=!=!=!=!=!=!=!
|
||||||
|
|
||||||
snps = snps_test[1:4]
|
|
||||||
|
|
||||||
|
#%%========================================================
|
||||||
|
# sapply with multiple values being returned as df
|
||||||
|
#Link: https://gist.github.com/primaryobjects/33adabc337edd67b4a8d
|
||||||
|
#%%========================================================
|
||||||
|
snps = c("pnca_p.trp68gly", "pnca_p.leu4ser", "pnca_p.leu159arg","pnca_p.his57arg" )
|
||||||
|
#snps = snps_test[1:4]
|
||||||
snps
|
snps
|
||||||
|
|
||||||
|
# yayy works!
|
||||||
# DV: pyrazinamide 0 or 1
|
# DV: pyrazinamide 0 or 1
|
||||||
dst = raw_data[[drug]]
|
dst = raw_data[[drug]]
|
||||||
|
|
||||||
# yayy works!
|
# initialise an empty df
|
||||||
testdf = data.frame()
|
or_df = data.frame()
|
||||||
|
|
||||||
x = sapply(snps,function(m){
|
x = sapply(snps,function(m){
|
||||||
|
|
||||||
df = data.frame()
|
#df = data.frame()
|
||||||
|
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
model<-glm(dst ~ mut, family = binomial)
|
model<-glm(dst ~ mut, family = binomial)
|
||||||
|
|
||||||
|
|
||||||
# allele frequency
|
# allele frequency
|
||||||
afs = mean(mut)
|
afs = mean(mut)
|
||||||
|
|
||||||
|
@ -419,7 +439,7 @@ x = sapply(snps,function(m){
|
||||||
|
|
||||||
pval_chisq = chisq.test(dst, mut)$p.value
|
pval_chisq = chisq.test(dst, mut)$p.value
|
||||||
|
|
||||||
#build a row to append to df
|
# build a row to append to df
|
||||||
row = data.frame(mutation = m
|
row = data.frame(mutation = m
|
||||||
, af = afs
|
, af = afs
|
||||||
, beta_logistic = beta_logistic
|
, beta_logistic = beta_logistic
|
||||||
|
@ -439,15 +459,15 @@ x = sapply(snps,function(m){
|
||||||
)
|
)
|
||||||
#print(row)
|
#print(row)
|
||||||
|
|
||||||
testdf <<- rbind(testdf, row)
|
or_df <<- rbind(or_df, row)
|
||||||
|
|
||||||
})
|
})
|
||||||
|
|
||||||
write.csv(testdf, 'test_ors.csv')
|
write.csv(or_df, 'test_ors.csv')
|
||||||
|
|
||||||
#=================================
|
#=================================
|
||||||
####################
|
# testing logistic or with maxit, etc.
|
||||||
# iterate: subset
|
|
||||||
#####################
|
|
||||||
print(paste0('subset to iterate over;', snps))
|
print(paste0('subset to iterate over;', snps))
|
||||||
|
|
||||||
# start loop
|
# start loop
|
||||||
|
@ -499,7 +519,12 @@ for (i in snps){
|
||||||
or_fisher = or_fisher[[1]]; or_fisher
|
or_fisher = or_fisher[[1]]; or_fisher
|
||||||
|
|
||||||
pval_fisher = fisher.test(table(dst, mut))$p.value ; pval_fisher
|
pval_fisher = fisher.test(table(dst, mut))$p.value ; pval_fisher
|
||||||
|
|
||||||
|
#=====================
|
||||||
|
# custom chi square
|
||||||
|
#=====================
|
||||||
|
or_mychisq = custom_chisq_or(mut,dst)
|
||||||
|
|
||||||
#=====================
|
#=====================
|
||||||
# chi square
|
# chi square
|
||||||
#=====================
|
#=====================
|
||||||
|
@ -513,9 +538,10 @@ for (i in snps){
|
||||||
# all output
|
# all output
|
||||||
writeLines(c(paste0("mutation:", i)
|
writeLines(c(paste0("mutation:", i)
|
||||||
, paste0("=========================")
|
, paste0("=========================")
|
||||||
, paste0("or_logistic:", or_logistic,"--->", "P-val_logistic_maxit:", pval_logistic_maxit )
|
, paste0("OR logistic:", or_logistic,"--->", "pval logistic:", pval_logistic )
|
||||||
, paste0("OR_fisher:", or_fisher, "--->","P-val_fisher:", pval_fisher )
|
, paste0("OR fisher:", or_fisher, "--->","pval fisher:", pval_fisher )
|
||||||
, paste0("Chi_sq_estimate:", est_chisq, "--->","P-val_chisq:", pval_chisq)))
|
, paste0("OR custom chisq:", or_mychisq, "--->","pval fisher:", pval_fisher )
|
||||||
|
, paste0("Chisq estimate:", est_chisq, "--->","pval chisq:", pval_chisq)))
|
||||||
}
|
}
|
||||||
#=====================
|
#=====================
|
||||||
# fishers test
|
# fishers test
|
||||||
|
@ -529,110 +555,4 @@ for (i in snps){
|
||||||
|
|
||||||
# https://stats.stackexchange.com/questions/259635/what-is-the-difference-using-a-fishers-exact-test-vs-a-logistic-regression-for
|
# https://stats.stackexchange.com/questions/259635/what-is-the-difference-using-a-fishers-exact-test-vs-a-logistic-regression-for
|
||||||
exact2x2(table(dst, mut),tsmethod="central")
|
exact2x2(table(dst, mut),tsmethod="central")
|
||||||
|
|
||||||
|
|
||||||
#=====================================================================
|
#=====================================================================
|
||||||
# iterate over a df and then add these values
|
|
||||||
#
|
|
||||||
my_data = as.data.frame(gene_snps_unique)
|
|
||||||
colnames(my_data) = "mutation"
|
|
||||||
print(colnames(my_data))
|
|
||||||
|
|
||||||
perfectSeparation <- function(w) {
|
|
||||||
if(grepl("fitted probabilities numerically 0 or 1 occurred",
|
|
||||||
as.character(w))) {ww <<- ww+1}
|
|
||||||
}
|
|
||||||
|
|
||||||
for(i in my_data$mutation) {
|
|
||||||
print(paste0('snp to iterate over:', i))
|
|
||||||
}
|
|
||||||
|
|
||||||
for(i in my_data$mutation) {
|
|
||||||
print(paste0('snp to iterate over:', i))
|
|
||||||
|
|
||||||
#####
|
|
||||||
# Run logistic regression
|
|
||||||
#####
|
|
||||||
|
|
||||||
#*************
|
|
||||||
# start logistic regression model building
|
|
||||||
# set the IV and DV for the logistic regression model and model
|
|
||||||
#*************
|
|
||||||
# IV: corresponds to each unique snp (extracted using grep)
|
|
||||||
mut = as.numeric(grepl(i,raw_data$dr_muts_pza))
|
|
||||||
|
|
||||||
# DV: pyrazinamide 0 or 1
|
|
||||||
dst = as.numeric(raw_data$pyrazinamide)
|
|
||||||
|
|
||||||
tab = table(mut, dst)
|
|
||||||
print(tab)
|
|
||||||
|
|
||||||
# glm model: with and without maxit
|
|
||||||
model = tryCatch( glm(dst ~ mut
|
|
||||||
, family = binomial
|
|
||||||
#, control = glm.control(maxit = 1) # only used when required for one step estimator
|
|
||||||
), warning = perfectSeparation)
|
|
||||||
|
|
||||||
model = glm(dst ~ mut, family = binomial)
|
|
||||||
|
|
||||||
print(summary(model))
|
|
||||||
|
|
||||||
#**********
|
|
||||||
# extract relevant model output
|
|
||||||
#**********
|
|
||||||
# extract log OR i.e the Beta estimate of the logistic model for a given snp
|
|
||||||
my_logor = summary(model)$coefficients[2,1]
|
|
||||||
print(paste0('Beta:', my_logor))
|
|
||||||
|
|
||||||
# Dervive OR i.e exp(my_or) from the logistic model for a given snp
|
|
||||||
#my_or = round(exp(summary(model)$coefficients[2,1]), roundto)
|
|
||||||
my_or = exp(summary(model)$coefficients[2,1])
|
|
||||||
print(paste0('OR:', my_or))
|
|
||||||
|
|
||||||
# extract SE of the logistic model for a given snp
|
|
||||||
my_se = summary(model)$coefficients[2,2]
|
|
||||||
print(paste0('SE:', my_se))
|
|
||||||
|
|
||||||
# extract Z of the logistic model for a given snp
|
|
||||||
my_zval = summary(model)$coefficients[2,3]
|
|
||||||
print(paste0('Z-value:', my_zval))
|
|
||||||
|
|
||||||
# extract P-value of the logistic model for a given snp
|
|
||||||
my_pval = summary(model)$coefficients[2,4]
|
|
||||||
print(paste0('P-value:', my_pval))
|
|
||||||
|
|
||||||
# extract confint interval of snp (2 steps, since the output is a named number)
|
|
||||||
ci_mod = exp(confint(model))[2,]
|
|
||||||
#my_ci = paste(ci_mod[["2.5 %"]], ",", ci_mod[["97.5 %"]])
|
|
||||||
|
|
||||||
my_ci_lower = ci_mod[["2.5 %"]]
|
|
||||||
my_ci_upper = ci_mod[["97.5 %"]]
|
|
||||||
|
|
||||||
print(paste0('CI_lower:', my_ci_lower))
|
|
||||||
print(paste0('CI_upper:', my_ci_upper))
|
|
||||||
|
|
||||||
#*************
|
|
||||||
# Assign the regression output in the to df (meta_pza_pnca_snps_only)
|
|
||||||
# you can use ('=' or '<-/->')
|
|
||||||
#*************
|
|
||||||
#my_data$logistic_logOR[my_data$mutation == i] = my_logor
|
|
||||||
|
|
||||||
my_or -> my_data$OR[my_data$mutation == i]
|
|
||||||
|
|
||||||
my_pval -> my_data$pvalue[my_data$mutation == i]
|
|
||||||
|
|
||||||
my_zval -> my_data$zvalue[my_data$mutation == i]
|
|
||||||
|
|
||||||
my_se -> my_data$logistic_se[my_data$mutation == i]
|
|
||||||
|
|
||||||
my_ci_lower -> my_data$ci_lower[my_data$mutation == i]
|
|
||||||
|
|
||||||
my_ci_upper -> my_data$ci_upper[my_data$mutation == i]
|
|
||||||
|
|
||||||
#=#=#=#=#=#=#=#
|
|
||||||
# COMMENT: This assigns the relevant extracted output
|
|
||||||
# to the df and fills NA where the mutation (row) doesn't exist
|
|
||||||
# in my mutation list I am iterating over
|
|
||||||
#=#=#=#=#=#=#=#
|
|
||||||
|
|
||||||
}
|
|
Loading…
Add table
Add a link
Reference in a new issue