remove unneeded dir
This commit is contained in:
parent
759054de35
commit
1cf1f4e70e
2 changed files with 0 additions and 517 deletions
|
@ -1,131 +0,0 @@
|
||||||
getwd()
|
|
||||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
|
||||||
getwd()
|
|
||||||
|
|
||||||
########################################################################
|
|
||||||
# Installing and loading required packages #
|
|
||||||
########################################################################
|
|
||||||
|
|
||||||
source("../Header_TT.R")
|
|
||||||
#source("barplot_colour_function.R")
|
|
||||||
require(data.table)
|
|
||||||
require(dplyr)
|
|
||||||
|
|
||||||
########################################################################
|
|
||||||
# Read file: call script for combining df for PS #
|
|
||||||
########################################################################
|
|
||||||
|
|
||||||
source("../combining_two_df.R")
|
|
||||||
|
|
||||||
###########################
|
|
||||||
# This will return:
|
|
||||||
|
|
||||||
# df with NA:
|
|
||||||
# merged_df2
|
|
||||||
# merged_df3
|
|
||||||
|
|
||||||
# df without NA:
|
|
||||||
# merged_df2_comp
|
|
||||||
# merged_df3_comp
|
|
||||||
###########################
|
|
||||||
|
|
||||||
#---------------------- PAY ATTENTION
|
|
||||||
# the above changes the working dir
|
|
||||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
|
||||||
#---------------------- PAY ATTENTION
|
|
||||||
|
|
||||||
###########################
|
|
||||||
# you need merged_df3
|
|
||||||
# or
|
|
||||||
# merged_df3_comp
|
|
||||||
# since these have unique SNPs
|
|
||||||
# I prefer to use the merged_df3
|
|
||||||
# because using the _comp dataset means
|
|
||||||
# we lose some muts and at this level, we should use
|
|
||||||
# as much info as available
|
|
||||||
###########################
|
|
||||||
|
|
||||||
# uncomment as necessary
|
|
||||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
# REASSIGNMENT
|
|
||||||
my_df = merged_df3
|
|
||||||
#my_df = merged_df3_comp
|
|
||||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
|
|
||||||
# delete variables not required
|
|
||||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
|
||||||
|
|
||||||
# quick checks
|
|
||||||
colnames(my_df)
|
|
||||||
str(my_df)
|
|
||||||
|
|
||||||
###########################
|
|
||||||
# Data for bfactor figure
|
|
||||||
# PS average
|
|
||||||
# Lig average
|
|
||||||
###########################
|
|
||||||
|
|
||||||
head(my_df$Position)
|
|
||||||
head(my_df$ratioDUET)
|
|
||||||
|
|
||||||
# order data frame
|
|
||||||
df = my_df[order(my_df$Position),]
|
|
||||||
|
|
||||||
head(df$Position)
|
|
||||||
head(df$ratioDUET)
|
|
||||||
|
|
||||||
#***********
|
|
||||||
# PS: average by position
|
|
||||||
#***********
|
|
||||||
|
|
||||||
mean_DUET_by_position <- df %>%
|
|
||||||
group_by(Position) %>%
|
|
||||||
summarize(averaged.DUET = mean(ratioDUET))
|
|
||||||
|
|
||||||
#***********
|
|
||||||
# Lig: average by position
|
|
||||||
#***********
|
|
||||||
mean_Lig_by_position <- df %>%
|
|
||||||
group_by(Position) %>%
|
|
||||||
summarize(averaged.Lig = mean(ratioPredAff))
|
|
||||||
|
|
||||||
|
|
||||||
#***********
|
|
||||||
# cbind:mean_DUET_by_position and mean_Lig_by_position
|
|
||||||
#***********
|
|
||||||
|
|
||||||
combined = as.data.frame(cbind(mean_DUET_by_position, mean_Lig_by_position ))
|
|
||||||
|
|
||||||
# sanity check
|
|
||||||
# mean_PS_Lig_Bfactor
|
|
||||||
|
|
||||||
colnames(combined)
|
|
||||||
|
|
||||||
colnames(combined) = c("Position"
|
|
||||||
, "average_DUETR"
|
|
||||||
, "Position2"
|
|
||||||
, "average_PredAffR")
|
|
||||||
|
|
||||||
colnames(combined)
|
|
||||||
|
|
||||||
identical(combined$Position, combined$Position2)
|
|
||||||
|
|
||||||
n = which(colnames(combined) == "Position2"); n
|
|
||||||
|
|
||||||
combined_df = combined[,-n]
|
|
||||||
|
|
||||||
max(combined_df$average_DUETR) ; min(combined_df$average_DUETR)
|
|
||||||
|
|
||||||
max(combined_df$average_PredAffR) ; min(combined_df$average_PredAffR)
|
|
||||||
|
|
||||||
#=============
|
|
||||||
# output csv
|
|
||||||
#============
|
|
||||||
outDir = "~/git/Data/pyrazinamide/input/processed/"
|
|
||||||
outFile = paste0(outDir, "mean_PS_Lig_Bfactor.csv")
|
|
||||||
print(paste0("Output file with path will be:","", outFile))
|
|
||||||
|
|
||||||
head(combined_df$Position); tail(combined_df$Position)
|
|
||||||
|
|
||||||
write.csv(combined_df, outFile
|
|
||||||
, row.names = F)
|
|
|
@ -1,386 +0,0 @@
|
||||||
getwd()
|
|
||||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts")
|
|
||||||
getwd()
|
|
||||||
|
|
||||||
########################################################################
|
|
||||||
# Installing and loading required packages #
|
|
||||||
########################################################################
|
|
||||||
|
|
||||||
source("Header_TT.R")
|
|
||||||
|
|
||||||
#########################################################
|
|
||||||
# TASK: replace B-factors in the pdb file with normalised values
|
|
||||||
# use the complex file with no water as mCSM lig was
|
|
||||||
# performed on this file. You can check it in the script: read_pdb file.
|
|
||||||
#########################################################
|
|
||||||
|
|
||||||
###########################
|
|
||||||
# 2: Read file: average stability values
|
|
||||||
# or mcsm_normalised file, output of step 4 mcsm pipeline
|
|
||||||
###########################
|
|
||||||
|
|
||||||
inDir = "~/git/Data/pyrazinamide/input/processed/"
|
|
||||||
inFile = paste0(inDir, "mean_PS_Lig_Bfactor.csv"); inFile
|
|
||||||
|
|
||||||
my_df <- read.csv(inFile
|
|
||||||
# , row.names = 1
|
|
||||||
# , stringsAsFactors = F
|
|
||||||
, header = T)
|
|
||||||
str(my_df)
|
|
||||||
|
|
||||||
#=========================================================
|
|
||||||
# Processing P1: Replacing B factor with mean ratioDUET scores
|
|
||||||
#=========================================================
|
|
||||||
|
|
||||||
#########################
|
|
||||||
# Read complex pdb file
|
|
||||||
# form the R script
|
|
||||||
##########################
|
|
||||||
|
|
||||||
source("read_pdb.R") # list of 8
|
|
||||||
|
|
||||||
# extract atom list into a variable
|
|
||||||
# since in the list this corresponds to data frame, variable will be a df
|
|
||||||
d = my_pdb[[1]]
|
|
||||||
|
|
||||||
# make a copy: required for downstream sanity checks
|
|
||||||
d2 = d
|
|
||||||
|
|
||||||
# sanity checks: B factor
|
|
||||||
max(d$b); min(d$b)
|
|
||||||
|
|
||||||
#*******************************************
|
|
||||||
# plot histograms for inspection
|
|
||||||
# 1: original B-factors
|
|
||||||
# 2: original DUET Scores
|
|
||||||
# 3: replaced B-factors with DUET Scores
|
|
||||||
#*********************************************
|
|
||||||
# Set the margin on all sides
|
|
||||||
par(oma = c(3,2,3,0)
|
|
||||||
, mar = c(1,3,5,2)
|
|
||||||
, mfrow = c(3,2))
|
|
||||||
#par(mfrow = c(3,2))
|
|
||||||
|
|
||||||
#1: Original B-factor
|
|
||||||
hist(d$b
|
|
||||||
, xlab = ""
|
|
||||||
, main = "B-factor")
|
|
||||||
|
|
||||||
plot(density(d$b)
|
|
||||||
, xlab = ""
|
|
||||||
, main = "B-factor")
|
|
||||||
|
|
||||||
# 2: DUET scores
|
|
||||||
hist(my_df$average_DUETR
|
|
||||||
, xlab = ""
|
|
||||||
, main = "Norm_DUET")
|
|
||||||
|
|
||||||
plot(density(my_df$average_DUETR)
|
|
||||||
, xlab = ""
|
|
||||||
, main = "Norm_DUET")
|
|
||||||
|
|
||||||
# 3: After the following replacement
|
|
||||||
#********************************
|
|
||||||
|
|
||||||
#=========
|
|
||||||
# step 0_P1: DONT RUN once you have double checked the matched output
|
|
||||||
#=========
|
|
||||||
# sanity check: match and assign to a separate column to double check
|
|
||||||
# colnames(my_df)
|
|
||||||
# d$ratioDUET = my_df$averge_DUETR[match(d$resno, my_df$Position)]
|
|
||||||
|
|
||||||
#=========
|
|
||||||
# step 1_P1
|
|
||||||
#=========
|
|
||||||
# Be brave and replace in place now (don't run sanity check)
|
|
||||||
# this makes all the B-factor values in the non-matched positions as NA
|
|
||||||
d$b = my_df$average_DUETR[match(d$resno, my_df$Position)]
|
|
||||||
|
|
||||||
#=========
|
|
||||||
# step 2_P1
|
|
||||||
#=========
|
|
||||||
# count NA in Bfactor
|
|
||||||
b_na = sum(is.na(d$b)) ; b_na
|
|
||||||
|
|
||||||
# count number of 0's in Bactor
|
|
||||||
sum(d$b == 0)
|
|
||||||
#table(d$b)
|
|
||||||
|
|
||||||
# replace all NA in b factor with 0
|
|
||||||
d$b[is.na(d$b)] = 0
|
|
||||||
|
|
||||||
# sanity check: should be 0
|
|
||||||
sum(is.na(d$b))
|
|
||||||
|
|
||||||
# sanity check: should be True
|
|
||||||
if (sum(d$b == 0) == b_na){
|
|
||||||
print ("Sanity check passed: NA's replaced with 0's successfully")
|
|
||||||
} else {
|
|
||||||
print("Error: NA replacement NOT successful, Debug code!")
|
|
||||||
}
|
|
||||||
|
|
||||||
max(d$b); min(d$b)
|
|
||||||
|
|
||||||
# sanity checks: should be True
|
|
||||||
if(max(d$b) == max(my_df$average_DUETR)){
|
|
||||||
print("Sanity check passed: B-factors replaced correctly")
|
|
||||||
} else {
|
|
||||||
print ("Error: Debug code please")
|
|
||||||
}
|
|
||||||
|
|
||||||
if (min(d$b) == min(my_df$average_DUETR)){
|
|
||||||
print("Sanity check passed: B-factors replaced correctly")
|
|
||||||
} else {
|
|
||||||
print ("Error: Debug code please")
|
|
||||||
}
|
|
||||||
|
|
||||||
#=========
|
|
||||||
# step 3_P1
|
|
||||||
#=========
|
|
||||||
# sanity check: dim should be same before reassignment
|
|
||||||
# should be TRUE
|
|
||||||
dim(d) == dim(d2)
|
|
||||||
|
|
||||||
#=========
|
|
||||||
# step 4_P1
|
|
||||||
#=========
|
|
||||||
# assign it back to the pdb file
|
|
||||||
my_pdb[[1]] = d
|
|
||||||
|
|
||||||
max(d$b); min(d$b)
|
|
||||||
|
|
||||||
#=========
|
|
||||||
# step 5_P1
|
|
||||||
#=========
|
|
||||||
# output dir
|
|
||||||
getwd()
|
|
||||||
outDir = "~/git/Data/pyrazinamide/input/structure/"
|
|
||||||
|
|
||||||
outFile = paste0(outDir, "complex1_BwithNormDUET.pdb"); outFile
|
|
||||||
write.pdb(my_pdb, outFile)
|
|
||||||
|
|
||||||
#********************************
|
|
||||||
# Add the 3rd histogram and density plots for comparisons
|
|
||||||
#********************************
|
|
||||||
# Plots continued...
|
|
||||||
# 3: hist and density of replaced B-factors with DUET Scores
|
|
||||||
hist(d$b
|
|
||||||
, xlab = ""
|
|
||||||
, main = "repalced-B")
|
|
||||||
|
|
||||||
plot(density(d$b)
|
|
||||||
, xlab = ""
|
|
||||||
, main = "replaced-B")
|
|
||||||
|
|
||||||
# graph titles
|
|
||||||
mtext(text = "Frequency"
|
|
||||||
, side = 2
|
|
||||||
, line = 0
|
|
||||||
, outer = TRUE)
|
|
||||||
|
|
||||||
mtext(text = "DUET_stability"
|
|
||||||
, side = 3
|
|
||||||
, line = 0
|
|
||||||
, outer = TRUE)
|
|
||||||
#********************************
|
|
||||||
|
|
||||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
||||||
# NOTE: This replaced B-factor distribution has the same
|
|
||||||
# x-axis as the PredAff normalised values, but the distribution
|
|
||||||
# is affected since 0 is overinflated. This is because all the positions
|
|
||||||
# where there are no SNPs have been assigned 0.
|
|
||||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#######################################################################
|
|
||||||
#====================== end of section 1 ==============================
|
|
||||||
#######################################################################
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#=========================================================
|
|
||||||
# Processing P2: Replacing B values with PredAff Scores
|
|
||||||
#=========================================================
|
|
||||||
# clear workspace
|
|
||||||
rm(list = ls())
|
|
||||||
|
|
||||||
###########################
|
|
||||||
# 2: Read file: average stability values
|
|
||||||
# or mcsm_normalised file, output of step 4 mcsm pipeline
|
|
||||||
###########################
|
|
||||||
|
|
||||||
inDir = "~/git/Data/pyrazinamide/input/processed/"
|
|
||||||
inFile = paste0(inDir, "mean_PS_Lig_Bfactor.csv"); inFile
|
|
||||||
|
|
||||||
my_df <- read.csv(inFile
|
|
||||||
# , row.names = 1
|
|
||||||
# , stringsAsFactors = F
|
|
||||||
, header = T)
|
|
||||||
str(my_df)
|
|
||||||
#rm(inDir, inFile)
|
|
||||||
|
|
||||||
#########################
|
|
||||||
# 3: Read complex pdb file
|
|
||||||
# form the R script
|
|
||||||
##########################
|
|
||||||
|
|
||||||
source("read_pdb.R") # list of 8
|
|
||||||
|
|
||||||
# extract atom list into a variable
|
|
||||||
# since in the list this corresponds to data frame, variable will be a df
|
|
||||||
d = my_pdb[[1]]
|
|
||||||
|
|
||||||
# make a copy: required for downstream sanity checks
|
|
||||||
d2 = d
|
|
||||||
|
|
||||||
# sanity checks: B factor
|
|
||||||
max(d$b); min(d$b)
|
|
||||||
|
|
||||||
#*******************************************
|
|
||||||
# plot histograms for inspection
|
|
||||||
# 1: original B-factors
|
|
||||||
# 2: original Pred Aff Scores
|
|
||||||
# 3: replaced B-factors with PredAff Scores
|
|
||||||
#********************************************
|
|
||||||
# Set the margin on all sides
|
|
||||||
par(oma = c(3,2,3,0)
|
|
||||||
, mar = c(1,3,5,2)
|
|
||||||
, mfrow = c(3,2))
|
|
||||||
#par(mfrow = c(3,2))
|
|
||||||
|
|
||||||
# 1: Original B-factor
|
|
||||||
hist(d$b
|
|
||||||
, xlab = ""
|
|
||||||
, main = "B-factor")
|
|
||||||
|
|
||||||
plot(density(d$b)
|
|
||||||
, xlab = ""
|
|
||||||
, main = "B-factor")
|
|
||||||
|
|
||||||
# 2: Pred Aff scores
|
|
||||||
hist(my_df$average_PredAffR
|
|
||||||
, xlab = ""
|
|
||||||
, main = "Norm_lig_average")
|
|
||||||
|
|
||||||
plot(density(my_df$average_PredAffR)
|
|
||||||
, xlab = ""
|
|
||||||
, main = "Norm_lig_average")
|
|
||||||
|
|
||||||
# 3: After the following replacement
|
|
||||||
#********************************
|
|
||||||
|
|
||||||
#=================================================
|
|
||||||
# Processing P2: Replacing B values with ratioPredAff scores
|
|
||||||
#=================================================
|
|
||||||
# use match to perform this replacement linking with "position no"
|
|
||||||
# in the pdb file, this corresponds to column "resno"
|
|
||||||
# in my_df, this corresponds to column "Position"
|
|
||||||
|
|
||||||
#=========
|
|
||||||
# step 0_P2: DONT RUN once you have double checked the matched output
|
|
||||||
#=========
|
|
||||||
# sanity check: match and assign to a separate column to double check
|
|
||||||
# colnames(my_df)
|
|
||||||
# d$ratioPredAff = my_df$average_PredAffR[match(d$resno, my_df$Position)] #1384, 17
|
|
||||||
|
|
||||||
#=========
|
|
||||||
# step 1_P2: BE BRAVE and replace in place now (don't run step 0)
|
|
||||||
#=========
|
|
||||||
# this makes all the B-factor values in the non-matched positions as NA
|
|
||||||
d$b = my_df$average_PredAffR[match(d$resno, my_df$Position)]
|
|
||||||
|
|
||||||
#=========
|
|
||||||
# step 2_P2
|
|
||||||
#=========
|
|
||||||
# count NA in Bfactor
|
|
||||||
b_na = sum(is.na(d$b)) ; b_na
|
|
||||||
|
|
||||||
# count number of 0's in Bactor
|
|
||||||
sum(d$b == 0)
|
|
||||||
#table(d$b)
|
|
||||||
|
|
||||||
# replace all NA in b factor with 0
|
|
||||||
d$b[is.na(d$b)] = 0
|
|
||||||
|
|
||||||
# sanity check: should be 0
|
|
||||||
sum(is.na(d$b))
|
|
||||||
|
|
||||||
if (sum(d$b == 0) == b_na){
|
|
||||||
print ("Sanity check passed: NA's replaced with 0's successfully")
|
|
||||||
} else {
|
|
||||||
print("Error: NA replacement NOT successful, Debug code!")
|
|
||||||
}
|
|
||||||
|
|
||||||
max(d$b); min(d$b)
|
|
||||||
|
|
||||||
# sanity checks: should be True
|
|
||||||
if (max(d$b) == max(my_df$average_PredAffR)){
|
|
||||||
print("Sanity check passed: B-factors replaced correctly")
|
|
||||||
} else {
|
|
||||||
print ("Error: Debug code please")
|
|
||||||
}
|
|
||||||
|
|
||||||
if (min(d$b) == min(my_df$average_PredAffR)){
|
|
||||||
print("Sanity check passed: B-factors replaced correctly")
|
|
||||||
} else {
|
|
||||||
print ("Error: Debug code please")
|
|
||||||
}
|
|
||||||
|
|
||||||
#=========
|
|
||||||
# step 3_P2
|
|
||||||
#=========
|
|
||||||
# sanity check: dim should be same before reassignment
|
|
||||||
# should be TRUE
|
|
||||||
dim(d) == dim(d2)
|
|
||||||
|
|
||||||
#=========
|
|
||||||
# step 4_P2
|
|
||||||
#=========
|
|
||||||
# assign it back to the pdb file
|
|
||||||
my_pdb[[1]] = d
|
|
||||||
|
|
||||||
max(d$b); min(d$b)
|
|
||||||
|
|
||||||
#=========
|
|
||||||
# step 5_P2
|
|
||||||
#=========
|
|
||||||
|
|
||||||
# output dir
|
|
||||||
outDir = "~/git/Data/pyrazinamide/input/structure/"
|
|
||||||
outFile = paste0(outDir, "complex1_BwithNormLIG.pdb"); outFile
|
|
||||||
write.pdb(my_pdb, outFile)
|
|
||||||
|
|
||||||
#********************************
|
|
||||||
# Add the 3rd histogram and density plots for comparisons
|
|
||||||
#********************************
|
|
||||||
# Plots continued...
|
|
||||||
# 3: hist and density of replaced B-factors with PredAff Scores
|
|
||||||
hist(d$b
|
|
||||||
, xlab = ""
|
|
||||||
, main = "repalced-B")
|
|
||||||
|
|
||||||
plot(density(d$b)
|
|
||||||
, xlab = ""
|
|
||||||
, main = "replaced-B")
|
|
||||||
|
|
||||||
# graph titles
|
|
||||||
mtext(text = "Frequency"
|
|
||||||
, side = 2
|
|
||||||
, line = 0
|
|
||||||
, outer = TRUE)
|
|
||||||
|
|
||||||
mtext(text = "Lig_stability"
|
|
||||||
, side = 3
|
|
||||||
, line = 0
|
|
||||||
, outer = TRUE)
|
|
||||||
|
|
||||||
#********************************
|
|
||||||
|
|
||||||
###########
|
|
||||||
# end of output files with Bfactors
|
|
||||||
##########
|
|
Loading…
Add table
Add a link
Reference in a new issue