separating mcsm_mean_stability_ensemble from combined script
This commit is contained in:
parent
06e5363112
commit
1bf66b145c
2 changed files with 99 additions and 180 deletions
|
@ -1,4 +1,9 @@
|
|||
source("~/git/LSHTM_analysis/config/pnca.R")
|
||||
#source("~/git/LSHTM_analysis/config/alr.R")
|
||||
#source("~/git/LSHTM_analysis/config/gid.R")
|
||||
#source("~/git/LSHTM_analysis/config/embb.R")
|
||||
#source("~/git/LSHTM_analysis/config/katg.R")
|
||||
#source("~/git/LSHTM_analysis/config/rpob.R")
|
||||
|
||||
source("/home/tanu/git/LSHTM_analysis/my_header.R")
|
||||
#########################################################
|
||||
|
@ -11,10 +16,8 @@ source("/home/tanu/git/LSHTM_analysis/my_header.R")
|
|||
# output
|
||||
#=======
|
||||
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
|
||||
|
||||
outfile_mean_ens_st_aff = paste0(outdir_images, "/", tolower(gene)
|
||||
, "_mean_ens_stab_aff.csv")
|
||||
|
||||
, "_mean_ens_stability.csv")
|
||||
print(paste0("Output file:", outfile_mean_ens_st_aff))
|
||||
|
||||
#%%===============================================================
|
||||
|
@ -24,6 +27,7 @@ print(paste0("Output file:", outfile_mean_ens_st_aff))
|
|||
#=============
|
||||
df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv")
|
||||
df3 = read.csv(df3_filename)
|
||||
length(df3$mutationinformation)
|
||||
|
||||
# mut_info checks
|
||||
table(df3$mutation_info)
|
||||
|
@ -57,12 +61,12 @@ common_cols = c("mutationinformation"
|
|||
#optional_cols = c()
|
||||
|
||||
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
|
||||
#TODO: affinity_cols
|
||||
scaled_cols = c("duet_scaled" , "duet_stability_change"
|
||||
,"deepddg_scaled" , "deepddg"
|
||||
,"ddg_dynamut2_scaled" , "ddg_dynamut2"
|
||||
,"foldx_scaled" , "ddg_foldx"
|
||||
|
||||
, "mcsm_ppi2_scaled" , "mcsm_ppi2_affinity"
|
||||
, "mcsm_na_scaled" , "mcsm_na_affinity"
|
||||
#,"consurf_scaled" , "consurf_score"
|
||||
#,"snap2_scaled" , "snap2_score"
|
||||
#,"provean_scaled" , "provean_score"
|
||||
|
@ -81,27 +85,26 @@ outcome_cols = c("duet_outcome"
|
|||
#,"snap2_outcome"
|
||||
#,"ligand_outcome"
|
||||
#,"mmcsm_lig_outcome"
|
||||
#, "mcsm_ppi2_outcome"
|
||||
#, "mcsm_na_outcome"
|
||||
)
|
||||
outcome_cols_affinity = c("ligand_outcome"
|
||||
,"mmcsm_lig_outcome")
|
||||
|
||||
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols, scaled_cols, outcome_cols, outcome_cols_affinity)]
|
||||
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols, scaled_cols,outcome_cols)]
|
||||
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols, outcome_cols)]
|
||||
|
||||
foo = df3[, cols_to_consider]
|
||||
df3_plot_orig = df3[, cols_to_extract]
|
||||
|
||||
##############################################################
|
||||
#####################
|
||||
# Ensemble stability
|
||||
#####################
|
||||
# extract outcome cols and map numeric values to the categories
|
||||
# Destabilising == 1, and stabilising == 0
|
||||
# Destabilising == 0, and stabilising == 1, so rescaling can let -1 be destabilising
|
||||
df3_plot = df3[, cols_to_extract]
|
||||
|
||||
# assign numeric values to outcome
|
||||
df3_plot[, outcome_cols] <- sapply(df3_plot[, outcome_cols]
|
||||
, function(x){ifelse(x == "Destabilising", 1, 0)})
|
||||
|
||||
, function(x){ifelse(x == "Destabilising", 0, 1)})
|
||||
table(df3$duet_outcome)
|
||||
table(df3_plot$duet_outcome)
|
||||
#=====================================
|
||||
# Stability (4 cols): average the scores
|
||||
# across predictors ==> average by
|
||||
|
@ -162,119 +165,15 @@ mean_ens_stability_by_position = as.data.frame(mean_ens_stability_by_position)
|
|||
# quit()
|
||||
# }
|
||||
##################################################################
|
||||
############################
|
||||
# Ensemble affinity: ligand
|
||||
############################
|
||||
# extract ligand affinity outcome cols and map numeric values to the categories
|
||||
# Destabilising == 1, and stabilising == 0
|
||||
cols_to_extract_affinity = cols_to_consider[cols_to_consider%in%c(common_cols
|
||||
, outcome_cols_affinity)]
|
||||
|
||||
|
||||
df3_plot_affinity = df3[, cols_to_extract_affinity]
|
||||
names(df3_plot_affinity)
|
||||
|
||||
df3_plot_affinity[, outcome_cols_affinity] <- sapply(df3_plot_affinity[, outcome_cols_affinity]
|
||||
, function(x){ifelse(x == "Destabilising", 1, 0)})
|
||||
|
||||
#=====================================
|
||||
# Affintiy (2 cols): average the scores
|
||||
# across predictors ==> average by
|
||||
# position ==> scale b/w -1 and 1
|
||||
|
||||
# column to average: ens_affinity
|
||||
#=====================================
|
||||
cols_to_average_affinity = which(colnames(df3_plot_affinity)%in%outcome_cols_affinity)
|
||||
cols_to_average_affinity
|
||||
|
||||
# ensemble average across predictors
|
||||
df3_plot_affinity$ens_affinity = rowMeans(df3_plot_affinity[,cols_to_average_affinity])
|
||||
|
||||
head(df3_plot_affinity$position); head(df3_plot_affinity$mutationinformation)
|
||||
head(df3_plot_affinity$ens_affinity)
|
||||
table(df3_plot_affinity$ens_affinity)
|
||||
|
||||
# ensemble average of predictors by position
|
||||
mean_ens_affinity_by_position <- df3_plot_affinity %>%
|
||||
dplyr::group_by(position) %>%
|
||||
dplyr::summarize(avg_ens_affinity = mean(ens_affinity))
|
||||
|
||||
# REscale b/w -1 and 1
|
||||
#en_aff_min = min(mean_ens_affinity_by_position['ens_affinity'])
|
||||
#en_aff_max = max(mean_ens_affinity_by_position['ens_affinity'])
|
||||
|
||||
# scale the average affintiy value between -1 and 1
|
||||
# mean_ens_affinity_by_position['avg_ens_affinity_scaled'] = lapply(mean_ens_affinity_by_position['avg_ens_affinity']
|
||||
# , function(x) ifelse(x < 0, x/abs(en_aff_min), x/en_aff_max))
|
||||
|
||||
|
||||
mean_ens_affinity_by_position['avg_ens_affinity_scaled'] = lapply(mean_ens_affinity_by_position['avg_ens_affinity']
|
||||
, function(x) {
|
||||
scales::rescale(x, to = c(-1,1)
|
||||
#, from = c(en_aff_min,en_aff_max))
|
||||
, from = c(0,1))
|
||||
})
|
||||
cat(paste0('Average affintiy scores:\n'
|
||||
, head(mean_ens_affinity_by_position['avg_ens_affinity'])
|
||||
, '\n---------------------------------------------------------------'
|
||||
, '\nAverage affintiy scaled scores:\n'
|
||||
, head(mean_ens_affinity_by_position['avg_ens_affinity_scaled'])))
|
||||
|
||||
#convert to a df
|
||||
mean_ens_affinity_by_position = as.data.frame(mean_ens_affinity_by_position)
|
||||
|
||||
|
||||
#FIXME: sanity checks
|
||||
# TODO: predetermine the bounds
|
||||
# l_bound_ens_aff = min(mean_ens_affintiy_by_position['avg_ens_affinity_scaled'])
|
||||
# u_bound_ens_aff = max(mean_ens_affintiy_by_position['avg_ens_affinity_scaled'])
|
||||
#
|
||||
# if ( (l_bound_ens_aff == -1) && (u_bound_ens_aff == 1) ){
|
||||
# cat(paste0("PASS: ensemble affinity scores averaged by position and then scaled"
|
||||
# , "\nmin ensemble averaged affinity: ", l_bound_ens_aff
|
||||
# , "\nmax ensemble averaged affinity: ", u_bound_ens_aff))
|
||||
# }else{
|
||||
# cat(paste0("FAIL: ensemble affinity scores could not be scaled b/w -1 and 1"
|
||||
# , "\nmin ensemble averaged affinity: ", l_bound_ens_aff
|
||||
# , "\nmax ensemble averaged affinity: ", u_bound_ens_aff))
|
||||
# quit()
|
||||
# }
|
||||
|
||||
|
||||
######################################################################
|
||||
##################
|
||||
# merge: mean ensemble stability and affinity by_position
|
||||
####################
|
||||
# if ( class(mean_ens_stability_by_position) && class(mean_ens_affinity_by_position) != "data.frame"){
|
||||
# cat("Y")
|
||||
# }
|
||||
|
||||
common_cols = intersect(colnames(mean_ens_stability_by_position), colnames(mean_ens_affinity_by_position))
|
||||
|
||||
if (dim(mean_ens_stability_by_position) && dim(mean_ens_affinity_by_position)){
|
||||
print(paste0("PASS: dim's match, mering dfs by column :", common_cols))
|
||||
#combined = as.data.frame(cbind(mean_duet_by_position, mean_affinity_by_position ))
|
||||
combined_df = as.data.frame(merge(mean_ens_stability_by_position
|
||||
, mean_ens_affinity_by_position
|
||||
, by = common_cols
|
||||
, all = T))
|
||||
|
||||
cat(paste0("\nnrows combined_df:", nrow(combined_df)
|
||||
, "\nnrows combined_df:", ncol(combined_df)))
|
||||
}else{
|
||||
cat(paste0("FAIL: dim's mismatch, aborting cbind!"
|
||||
, "\nnrows df1:", nrow(mean_duet_by_position)
|
||||
, "\nnrows df2:", nrow(mean_affinity_by_position)))
|
||||
quit()
|
||||
}
|
||||
#%%============================================================
|
||||
# output
|
||||
write.csv(combined_df, outfile_mean_ens_st_aff
|
||||
#write.csv(combined_df, outfile_mean_ens_st_aff
|
||||
write.csv(mean_ens_stability_by_position
|
||||
, outfile_mean_ens_st_aff
|
||||
, row.names = F)
|
||||
cat("Finished writing file:\n"
|
||||
, outfile_mean_ens_st_aff
|
||||
, "\nNo. of rows:", nrow(combined_df)
|
||||
, "\nNo. of cols:", ncol(combined_df))
|
||||
, "\nNo. of rows:", nrow(mean_ens_stability_by_position)
|
||||
, "\nNo. of cols:", ncol(mean_ens_stability_by_position))
|
||||
|
||||
# end of script
|
||||
#===============================================================
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
# rendering on chimera
|
||||
|
||||
# read mcsm mean stability value files
|
||||
# extract the respecitve mean values and assign to the
|
||||
# extract the respective mean values and assign to the
|
||||
# b-factor column within their respective pdbs
|
||||
|
||||
# generate some distribution plots for inspection
|
||||
|
@ -52,7 +52,8 @@ cat(gene_match)
|
|||
datadir = paste0("~/git/Data")
|
||||
indir = paste0(datadir, "/", drug, "/input")
|
||||
outdir = paste0("~/git/Data", "/", drug, "/output")
|
||||
outdir_plots = paste0("~/git/Data", "/", drug, "/output/plots")
|
||||
#outdir_plots = paste0("~/git/Data", "/", drug, "/output/plots")
|
||||
outdir_plots = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
|
||||
|
||||
#======
|
||||
# input
|
||||
|
@ -61,14 +62,19 @@ in_filename_pdb = paste0(tolower(gene), "_complex.pdb")
|
|||
infile_pdb = paste0(indir, "/", in_filename_pdb)
|
||||
cat(paste0("Input file:", infile_pdb) )
|
||||
|
||||
in_filename_mean_stability = paste0(tolower(gene), "_mean_stability.csv")
|
||||
infile_mean_stability = paste0(outdir, "/", in_filename_mean_stability)
|
||||
#in_filename_mean_stability = paste0(tolower(gene), "_mean_stability.csv")
|
||||
#infile_mean_stability = paste0(outdir, "/", in_filename_mean_stability)
|
||||
|
||||
in_filename_mean_stability = paste0(tolower(gene), "_mean_ens_stab_aff.csv")
|
||||
infile_mean_stability = paste0(outdir_plots, "/", in_filename_mean_stability)
|
||||
|
||||
cat(paste0("Input file:", infile_mean_stability) )
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
out_filename_duet_mspdb = paste0(tolower(gene), "_complex_bduet_ms.pdb")
|
||||
#out_filename_duet_mspdb = paste0(tolower(gene), "_complex_bduet_ms.pdb")
|
||||
out_filename_duet_mspdb = paste0(tolower(gene), "_complex_b_stab_ms.pdb")
|
||||
outfile_duet_mspdb = paste0(outdir_plots, "/", out_filename_duet_mspdb)
|
||||
print(paste0("Output file:", outfile_duet_mspdb))
|
||||
|
||||
|
@ -77,6 +83,8 @@ outfile_lig_mspdb = paste0(outdir_plots, "/", out_filename_lig_mspdb)
|
|||
print(paste0("Output file:", outfile_lig_mspdb))
|
||||
|
||||
#%%===============================================================
|
||||
#NOTE: duet here refers to the ensemble stability values
|
||||
|
||||
###########################
|
||||
# Read file: average stability values
|
||||
# or mcsm_normalised file
|
||||
|
@ -133,17 +141,17 @@ par(oma = c(3,2,3,0)
|
|||
#, mfrow = c(3,2)
|
||||
, mfrow = c(3,4))
|
||||
|
||||
#************
|
||||
#=============
|
||||
# Row 1 plots: original B-factors
|
||||
# duet and affinity
|
||||
#************
|
||||
#=============
|
||||
hist(df_duet$b
|
||||
, xlab = ""
|
||||
, main = "Bfactor duet")
|
||||
, main = "Bfactor stability")
|
||||
|
||||
plot(density(df_duet$b)
|
||||
, xlab = ""
|
||||
, main = "Bfactor duet")
|
||||
, main = "Bfactor stability")
|
||||
|
||||
|
||||
hist(df_lig$b
|
||||
|
@ -154,32 +162,36 @@ plot(density(df_lig$b)
|
|||
, xlab = ""
|
||||
, main = "Bfactor affinity")
|
||||
|
||||
#************
|
||||
#=============
|
||||
# Row 2 plots: original mean stability values
|
||||
# duet and affinity
|
||||
#************
|
||||
hist(my_df$averaged_duet
|
||||
#=============
|
||||
|
||||
#hist(my_df$averaged_duet
|
||||
hist(my_df$avg_ens_stability_scaled
|
||||
, xlab = ""
|
||||
, main = "mean duet values")
|
||||
, main = "mean stability values")
|
||||
|
||||
plot(density(my_df$averaged_duet)
|
||||
#plot(density(my_df$averaged_duet)
|
||||
plot(density(my_df$avg_ens_stability_scaled)
|
||||
, xlab = ""
|
||||
, main = "mean duet values")
|
||||
, main = "mean stability values")
|
||||
|
||||
|
||||
hist(my_df$averaged_affinity
|
||||
#hist(my_df$averaged_affinity
|
||||
hist(my_df$avg_ens_affinity_scaled
|
||||
, xlab = ""
|
||||
, main = "mean affinity values")
|
||||
|
||||
plot(density(my_df$averaged_affinity)
|
||||
#plot(density(my_df$averaged_affinity)
|
||||
plot(density(my_df$avg_ens_affinity_scaled)
|
||||
, xlab = ""
|
||||
, main = "mean affinity values")
|
||||
|
||||
#************
|
||||
#==============
|
||||
# Row 3 plots: replaced B-factors with mean stability values
|
||||
# After actual replacement in the b factor column
|
||||
#*************
|
||||
#=========================================================
|
||||
#===============
|
||||
################################################################
|
||||
#=========
|
||||
# step 0_P1: DONT RUN once you have double checked the matched output
|
||||
#=========
|
||||
|
@ -192,8 +204,12 @@ plot(density(my_df$averaged_affinity)
|
|||
#=========
|
||||
# Be brave and replace in place now (don"t run sanity check)
|
||||
# this makes all the B-factor values in the non-matched positions as NA
|
||||
df_duet$b = my_df$averaged_duet_scaled[match(df_duet$resno, my_df$position)]
|
||||
df_lig$b = my_df$averaged_affinity_scaled[match(df_lig$resno, my_df$position)]
|
||||
|
||||
#df_duet$b = my_df$averaged_duet_scaled[match(df_duet$resno, my_df$position)]
|
||||
#df_lig$b = my_df$averaged_affinity_scaled[match(df_lig$resno, my_df$position)]
|
||||
|
||||
df_duet$b = my_df$avg_ens_stability_scaled[match(df_duet$resno, my_df$position)]
|
||||
df_lig$b = my_df$avg_ens_affinity_scaled[match(df_lig$resno, my_df$position)]
|
||||
|
||||
#=========
|
||||
# step 2_P1
|
||||
|
@ -207,34 +223,35 @@ sum(df_duet$b == 0)
|
|||
sum(df_lig$b == 0)
|
||||
|
||||
# replace all NA in b factor with 0
|
||||
df_duet$b[is.na(df_duet$b)] = 0
|
||||
df_lig$b[is.na(df_lig$b)] = 0
|
||||
na_rep = 2
|
||||
df_duet$b[is.na(df_duet$b)] = na_rep
|
||||
df_lig$b[is.na(df_lig$b)] = na_rep
|
||||
|
||||
# sanity check: should be 0 and True
|
||||
# duet and lig
|
||||
if ( (sum(df_duet$b == 0) == b_na_duet) && (sum(df_lig$b == 0) == b_na_lig) ) {
|
||||
print ("PASS: NA's replaced with 0s successfully in df_duet and df_lig")
|
||||
} else {
|
||||
print("FAIL: NA replacement in df_duet NOT successful")
|
||||
quit()
|
||||
}
|
||||
# # sanity check: should be 0 and True
|
||||
# # duet and lig
|
||||
# if ( (sum(df_duet$b == na_rep) == b_na_duet) && (sum(df_lig$b == na_rep) == b_na_lig) ) {
|
||||
# print ("PASS: NA's replaced with 0s successfully in df_duet and df_lig")
|
||||
# } else {
|
||||
# print("FAIL: NA replacement in df_duet NOT successful")
|
||||
# quit()
|
||||
# }
|
||||
#
|
||||
# max(df_duet$b); min(df_duet$b)
|
||||
#
|
||||
# # sanity checks: should be True
|
||||
# if( (max(df_duet$b) == max(my_df$avg_ens_stability_scaled)) & (min(df_duet$b) == min(my_df$avg_ens_stability_scaled)) ){
|
||||
# print("PASS: B-factors replaced correctly in df_duet")
|
||||
# } else {
|
||||
# print ("FAIL: To replace B-factors in df_duet")
|
||||
# quit()
|
||||
# }
|
||||
|
||||
max(df_duet$b); min(df_duet$b)
|
||||
|
||||
# sanity checks: should be True
|
||||
if( (max(df_duet$b) == max(my_df$averaged_duet_scaled)) & (min(df_duet$b) == min(my_df$averaged_duet_scaled)) ){
|
||||
print("PASS: B-factors replaced correctly in df_duet")
|
||||
} else {
|
||||
print ("FAIL: To replace B-factors in df_duet")
|
||||
quit()
|
||||
}
|
||||
|
||||
if( (max(df_lig$b) == max(my_df$averaged_affinity_scaled)) & (min(df_lig$b) == min(my_df$averaged_affinity_scaled)) ){
|
||||
print("PASS: B-factors replaced correctly in df_lig")
|
||||
} else {
|
||||
print ("FAIL: To replace B-factors in df_lig")
|
||||
quit()
|
||||
}
|
||||
# if( (max(df_lig$b) == max(my_df$avg_ens_affinity_scaled)) & (min(df_lig$b) == min(my_df$avg_ens_affinity_scaled)) ){
|
||||
# print("PASS: B-factors replaced correctly in df_lig")
|
||||
# } else {
|
||||
# print ("FAIL: To replace B-factors in df_lig")
|
||||
# quit()
|
||||
# }
|
||||
|
||||
#=========
|
||||
# step 3_P1
|
||||
|
@ -255,6 +272,8 @@ if ( (dim(df_duet)[1] == dim(d2_duet)[1]) & (dim(df_lig)[1] == dim(d2_lig)[1]) &
|
|||
# assign it back to the pdb file
|
||||
my_pdb_duet[['atom']] = df_duet
|
||||
max(df_duet$b); min(df_duet$b)
|
||||
table(df_duet$b)
|
||||
sum(is.na(df_duet$b))
|
||||
|
||||
my_pdb_lig[['atom']] = df_lig
|
||||
max(df_lig$b); min(df_lig$b)
|
||||
|
@ -268,9 +287,9 @@ write.pdb(my_pdb_duet, outfile_duet_mspdb)
|
|||
cat(paste0("output file ligand mean stability pdb:", outfile_lig_mspdb))
|
||||
write.pdb(my_pdb_lig, outfile_lig_mspdb)
|
||||
|
||||
#********************************
|
||||
#============================
|
||||
# Add the 3rd histogram and density plots for comparisons
|
||||
#********************************
|
||||
#============================
|
||||
# Plots continued...
|
||||
# Row 3 plots: hist and density of replaced B-factors with stability values
|
||||
hist(df_duet$b
|
||||
|
@ -296,16 +315,17 @@ mtext(text = "Frequency"
|
|||
, line = 0
|
||||
, outer = TRUE)
|
||||
|
||||
mtext(text = "Stability Distribution"
|
||||
mtext(text = paste0(tolower(gene), ": Stability Distribution")
|
||||
, side = 3
|
||||
, line = 0
|
||||
, outer = TRUE)
|
||||
#********************************
|
||||
#============================================
|
||||
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
# NOTE: This replaced B-factor distribution has the same
|
||||
# x-axis as the PredAff normalised values, but the distribution
|
||||
# is affected since 0 is overinflated. This is because all the positions
|
||||
# is affected since 0 is overinflated/or hs an additional blip because
|
||||
# of the positions not associated with resistance. This is because all the positions
|
||||
# where there are no SNPs have been assigned 0???
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue