all OR calcs using sapply and output as df
This commit is contained in:
parent
8f272bdc17
commit
18998092f4
1 changed files with 260 additions and 79 deletions
|
@ -1,5 +1,5 @@
|
|||
#########################################################
|
||||
# TASK: To compare OR from master data
|
||||
# TASK: To compare OR from master snps
|
||||
# chisq, fisher test and logistic and adjusted logistic
|
||||
#########################################################
|
||||
getwd()
|
||||
|
@ -28,10 +28,10 @@ outdir = paste0(datadir, '/', drug, '/', 'output')
|
|||
in_filename = 'original_tanushree_data_v2.csv'
|
||||
#in_filename = 'mtb_gwas_v3.csv'
|
||||
infile = paste0(datadir, '/', in_filename)
|
||||
cat(paste0('Reading infile1: raw data', ' ', infile) )
|
||||
cat(paste0('Reading infile1: raw snps', ' ', infile) )
|
||||
|
||||
# infile2: _gene associated meta data file to extract valid snps and add calcs to.
|
||||
# This is outfile3 from data_extraction.py
|
||||
# infile2: _gene associated meta snps file to extract valid snps and add calcs to.
|
||||
# This is outfile3 from snps_extraction.py
|
||||
in_filename_metadata = paste0(tolower(gene), '_metadata.csv')
|
||||
infile_metadata = paste0(outdir, '/', in_filename_metadata)
|
||||
cat(paste0('Reading infile2: gene associated metadata:', infile_metadata))
|
||||
|
@ -39,17 +39,17 @@ cat(paste0('Reading infile2: gene associated metadata:', infile_metadata))
|
|||
#===========
|
||||
# output
|
||||
#===========
|
||||
out_filename = paste0(tolower(gene),'_', 'meta_data_with_AF_OR.csv')
|
||||
out_filename = paste0(tolower(gene),'_', 'af_or.csv')
|
||||
outfile = paste0(outdir, '/', out_filename)
|
||||
cat(paste0('Output file with full path:', outfile))
|
||||
#%% end of variable assignment for input and output files
|
||||
|
||||
#########################################################
|
||||
# 1: Read master/raw data stored in Data/
|
||||
# 1: Read master/raw snps stored in snps/
|
||||
#####################################################
|
||||
|
||||
#===============
|
||||
# Step 1: read raw data (all remove entries with NA in pza column)
|
||||
# Step 1: read raw snps (all remove entries with NA in pza column)
|
||||
#===============
|
||||
raw_data_all = read.csv(infile, stringsAsFactors = F)
|
||||
|
||||
|
@ -147,7 +147,6 @@ if(nrow(gene_snps_or) == expected_rows){
|
|||
gene_snps_unique = unique(gene_snps_or$mutation)
|
||||
|
||||
cat(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(gene_snps_unique)))
|
||||
|
||||
#=====================================
|
||||
#OR calcs using the following 4
|
||||
#1) chisq.test
|
||||
|
@ -163,7 +162,7 @@ cat(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(gene_
|
|||
# Define OR function
|
||||
#x = as.numeric(mut)
|
||||
#y = dst
|
||||
logistic_chisq_or = function(x,y){
|
||||
custom_chisq_or = function(x,y){
|
||||
tab = as.matrix(table(x,y))
|
||||
a = tab[2,2]
|
||||
if (a==0){ a<-0.5}
|
||||
|
@ -179,7 +178,7 @@ logistic_chisq_or = function(x,y){
|
|||
|
||||
#========================
|
||||
# TEST WITH ONE
|
||||
|
||||
#========================
|
||||
i = "pnca_p.trp68gly"
|
||||
i = "pnca_p.gln10pro"
|
||||
i = "pnca_p.leu159arg"
|
||||
|
@ -211,6 +210,11 @@ table(mut, dst, sid)
|
|||
#============================
|
||||
# compare OR
|
||||
chisq.test(table(mut,dst))
|
||||
chisq.test(table(mut,dst)) $ statistic
|
||||
|
||||
f = chisq.test(table(mut,dst)) $ statistic
|
||||
chisq.test(dst, mut) $ statistic
|
||||
|
||||
fisher.test(table(mut, dst))
|
||||
fisher.test(table(mut, dst))$p.value
|
||||
fisher.test(table(mut, dst))$estimate
|
||||
|
@ -219,53 +223,79 @@ logistic_chisq_or(mut,dst)
|
|||
# logistic or
|
||||
summary(model<-glm(dst ~ mut, family = binomial))
|
||||
or_logistic = exp(summary(model)$coefficients[2,1]); print(or_logistic)
|
||||
pval_logistic = summary(model)$coefficients[2,4]; print(pval_logistic)
|
||||
pval_logistic_maxit = summary(model)$coefficients[2,4]; print(pval_logistic_maxit)
|
||||
|
||||
# adjusted logistic or
|
||||
# extract SE of the logistic model for a given snp
|
||||
logistic_se = summary(model)$coefficients[2,2]
|
||||
print(paste0('SE:', logistic_se))
|
||||
|
||||
# extract Z of the logistic model for a given snp
|
||||
logistic_zval = summary(model)$coefficients[2,3]
|
||||
print(paste0('Z-value:', logistic_zval))
|
||||
|
||||
|
||||
# extract confint interval of snp (2 steps, since the output is a named number)
|
||||
ci_mod = exp(confint(model))[2,]
|
||||
print(paste0('CI:', ci_mod))
|
||||
#logistic_ci = paste(ci_mod[["2.5 %"]], ",", ci_mod[["97.5 %"]])
|
||||
|
||||
logistic_ci_lower = ci_mod[["2.5 %"]]
|
||||
logistic_ci_upper = ci_mod[["97.5 %"]]
|
||||
|
||||
print(paste0('CI_lower:', logistic_ci_lower))
|
||||
print(paste0('CI_upper:', logistic_ci_upper))
|
||||
|
||||
|
||||
# adjusted logistic or: doesn't seem to make a difference
|
||||
summary(model2<-glm(dst ~ mut + sid, family = binomial))
|
||||
or_logistic2 = exp(summary(model2)$coefficients[2,1]); print(or_logistic2)
|
||||
pval_logistic2 = summary(model2)$coefficients[2,4]; print(pval_logistic2)
|
||||
|
||||
#=========================
|
||||
#============ looping with sapply
|
||||
#####################
|
||||
# iterate: subset
|
||||
#####################
|
||||
|
||||
ors = sapply(gene_snps_unique,function(m){
|
||||
snps_test = c("pnca_p.trp68gly", "pnca_p.leu4ser", "pnca_p.leu159arg","pnca_p.his57arg" )
|
||||
|
||||
snps = snps_test[1:4]
|
||||
|
||||
snps
|
||||
|
||||
|
||||
ors = sapply(snps,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
logistic_chisq_or(mut,dst)
|
||||
})
|
||||
|
||||
ors
|
||||
|
||||
pvals = sapply(gene_snps_unique,function(m){
|
||||
pvals = sapply(snps,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
fisher.test(mut,dst)$p.value
|
||||
})
|
||||
|
||||
pvals
|
||||
|
||||
afs = sapply(gene_snps_unique,function(m){
|
||||
afs = sapply(snps,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
mean(mut)
|
||||
})
|
||||
|
||||
afs
|
||||
|
||||
# logistic or
|
||||
ors_logistic = sapply(gene_snps_unique,function(m){
|
||||
## logistic or
|
||||
ors_logistic = sapply(snps,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
model<-glm(dst ~ mut, family = binomial)
|
||||
or_logistic = exp(summary(model)$coefficients[2,1])
|
||||
#pval_logistic = summary(model)$coefficients[2,4]
|
||||
#logistic_se = summary(model)$coefficients[2,2]
|
||||
#logistic_zval = summary(model)$coefficients[2,3]
|
||||
#ci_mod = exp(confint(model))[2,]
|
||||
#logistic_ci_lower = ci_mod[["2.5 %"]]
|
||||
#logistic_ci_upper = ci_mod[["97.5 %"]]
|
||||
|
||||
})
|
||||
ors_logistic
|
||||
head(ors_logistic); head(names(ors_logistic))
|
||||
|
||||
## logistic p-value
|
||||
pvals_logistic = sapply(gene_snps_unique,function(m){
|
||||
pvals_logistic = sapply(snps,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
model<-glm(dst ~ mut , family = binomial)
|
||||
pval_logistic = summary(model)$coefficients[2,4]
|
||||
|
@ -274,7 +304,7 @@ pvals_logistic = sapply(gene_snps_unique,function(m){
|
|||
head(pvals_logistic); head(names(pvals_logistic))
|
||||
|
||||
## logistic se
|
||||
se_logistic = sapply(gene_snps_unique,function(m){
|
||||
se_logistic = sapply(snps,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
model<-glm(dst ~ mut , family = binomial)
|
||||
logistic_se = summary(model)$coefficients[2,2]
|
||||
|
@ -293,7 +323,7 @@ zval_logistic = sapply(gene_snps_unique,function(m){
|
|||
head(zval_logistic); head(names(zval_logistic))
|
||||
|
||||
## logistic ci - lower bound
|
||||
ci_lb_logistic = sapply(gene_snps_unique,function(m){
|
||||
ci_lb_logistic = sapply(snps,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
model<-glm(dst ~ mut , family = binomial)
|
||||
ci_mod = exp(confint(model))[2,]
|
||||
|
@ -303,7 +333,7 @@ ci_lb_logistic = sapply(gene_snps_unique,function(m){
|
|||
head(ci_lb_logistic); head(names(ci_lb_logistic))
|
||||
|
||||
## logistic ci - upper bound
|
||||
ci_ub_logistic = sapply(gene_snps_unique,function(m){
|
||||
ci_ub_logistic = sapply(snps,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
model<-glm(dst ~ mut , family = binomial)
|
||||
ci_mod = exp(confint(model))[2,]
|
||||
|
@ -314,7 +344,7 @@ ci_ub_logistic = sapply(gene_snps_unique,function(m){
|
|||
head(ci_ub_logistic); head(names(ci_ub_logistic))
|
||||
|
||||
# logistic adj # Doesn't seem to make a difference
|
||||
logistic_ors2 = sapply(gene_snps_unique,function(m){
|
||||
logistic_ors2 = sapply(snps,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
c = raw_data$id[mut]
|
||||
sid = grepl(paste(c,collapse="|"), raw_data$id)
|
||||
|
@ -327,50 +357,106 @@ logistic_ors2
|
|||
|
||||
or_logistic2; pval_logistic2
|
||||
|
||||
|
||||
head(logistic_ors)
|
||||
#====================================
|
||||
# logistic
|
||||
summary(model<-glm(dst ~ mut
|
||||
, family = binomial
|
||||
#, control = glm.control(maxit = 1)
|
||||
#, options(warn = 1)
|
||||
))
|
||||
or_logistic = exp(summary(model)$coefficients[2,1]); print(or_logistic)
|
||||
pval_logistic_maxit = summary(model)$coefficients[2,4]; print(pval_logistic_maxit)
|
||||
#===========================================================
|
||||
#%%
|
||||
# sapply with multiple values
|
||||
|
||||
# extract SE of the logistic model for a given snp
|
||||
logistic_se = summary(model)$coefficients[2,2]
|
||||
print(paste0('SE:', logistic_se))
|
||||
|
||||
|
||||
# extract Z of the logistic model for a given snp
|
||||
logistic_zval = summary(model)$coefficients[2,3]
|
||||
print(paste0('Z-value:', logistic_zval))
|
||||
|
||||
|
||||
# extract confint interval of snp (2 steps, since the output is a named number)
|
||||
ci_mod = exp(confint(model))[2,]
|
||||
print(paste0('CI:', ci_mod))
|
||||
#logistic_ci = paste(ci_mod[["2.5 %"]], ",", ci_mod[["97.5 %"]])
|
||||
|
||||
logistic_ci_lower = ci_mod[["2.5 %"]]
|
||||
logistic_ci_upper = ci_mod[["97.5 %"]]
|
||||
|
||||
print(paste0('CI_lower:', logistic_ci_lower))
|
||||
print(paste0('CI_upper:', logistic_ci_upper))
|
||||
|
||||
#####################
|
||||
# iterate: subset
|
||||
#####################
|
||||
#https://gist.github.com/primaryobjects/33adabc337edd67b4a8d
|
||||
|
||||
snps_test = c("pnca_p.trp68gly", "pnca_p.leu4ser", "pnca_p.leu159arg","pnca_p.his57arg" )
|
||||
|
||||
data = snps_test[1:2]
|
||||
snps = snps_test[1:4]
|
||||
|
||||
data
|
||||
################# start loop
|
||||
for (i in data){
|
||||
snps
|
||||
|
||||
# DV: pyrazinamide 0 or 1
|
||||
dst = raw_data[[drug]]
|
||||
|
||||
# yayy works!
|
||||
testdf = data.frame()
|
||||
|
||||
x = sapply(snps,function(m){
|
||||
|
||||
df = data.frame()
|
||||
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
model<-glm(dst ~ mut, family = binomial)
|
||||
|
||||
|
||||
# allele frequency
|
||||
afs = mean(mut)
|
||||
|
||||
# logistic model
|
||||
beta_logistic = summary(model)$coefficients[2,1]
|
||||
|
||||
or_logistic = exp(summary(model)$coefficients[2,1])
|
||||
print(paste0('logistic OR:', or_logistic))
|
||||
|
||||
pval_logistic = summary(model)$coefficients[2,4]
|
||||
print(paste0('logistic pval:', pval_logistic))
|
||||
|
||||
se_logistic = summary(model)$coefficients[2,2]
|
||||
zval_logistic = summary(model)$coefficients[2,3]
|
||||
ci_mod = exp(confint(model))[2,]
|
||||
ci_lower_logistic = ci_mod[["2.5 %"]]
|
||||
ci_upper_logistic = ci_mod[["97.5 %"]]
|
||||
|
||||
# custom_chisq and fisher: OR p-value and CI
|
||||
or_mychisq = custom_chisq_or(dst, mut)
|
||||
|
||||
or_fisher = fisher.test(dst, mut)$estimate
|
||||
or_fisher = or_fisher[[1]]
|
||||
|
||||
pval_fisher = fisher.test(dst, mut)$p.value
|
||||
|
||||
ci_lower_fisher = fisher.test(dst, mut)$conf.int[1]
|
||||
ci_upper_fisher = fisher.test(dst, mut)$conf.int[2]
|
||||
|
||||
# chi sq estimates
|
||||
estimate_chisq = chisq.test(dst, mut)$statistic; estimate_chisq
|
||||
est_chisq = estimate_chisq[[1]]; print(est_chisq)
|
||||
|
||||
pval_chisq = chisq.test(dst, mut)$p.value
|
||||
|
||||
#build a row to append to df
|
||||
row = data.frame(mutation = m
|
||||
, af = afs
|
||||
, beta_logistic = beta_logistic
|
||||
, or_logistic = or_logistic
|
||||
, pval_logistic = pval_logistic
|
||||
, se_logistic = se_logistic
|
||||
, zval_logistic = zval_logistic
|
||||
, ci_low_logistic = ci_lower_logistic
|
||||
, ci_hi_logistic = ci_upper_logistic
|
||||
, or_mychisq = or_mychisq
|
||||
, or_fisher = or_fisher
|
||||
, pval_fisher = pval_fisher
|
||||
, ci_low_fisher= ci_lower_fisher
|
||||
, ci_hi_fisher = ci_upper_fisher
|
||||
, est_chisq = est_chisq
|
||||
, pval_chisq = pval_chisq
|
||||
)
|
||||
#print(row)
|
||||
|
||||
testdf <<- rbind(testdf, row)
|
||||
|
||||
})
|
||||
|
||||
write.csv(testdf, 'test_ors.csv')
|
||||
#=================================
|
||||
####################
|
||||
# iterate: subset
|
||||
#####################
|
||||
print(paste0('subset to iterate over;', snps))
|
||||
|
||||
# start loop
|
||||
perfectSeparation <- function(w) {
|
||||
if(grepl("fitted probabilities numerically 0 or 1 occurred",
|
||||
as.character(w))) {ww <<- ww+1}
|
||||
}
|
||||
|
||||
for (i in snps){
|
||||
|
||||
print(i)
|
||||
|
||||
|
@ -386,7 +472,6 @@ for (i in data){
|
|||
# table
|
||||
print(table(dst, mut))
|
||||
|
||||
|
||||
#=====================
|
||||
# logistic regression, glm.control(maxit = n)
|
||||
#https://stats.stackexchange.com/questions/11109/how-to-deal-with-perfect-separation-in-logistic-regression
|
||||
|
@ -405,6 +490,7 @@ for (i in data){
|
|||
ci_mod = exp(confint(model))[2,]
|
||||
logistic_ci_lower = ci_mod[["2.5 %"]]
|
||||
logistic_ci_upper = ci_mod[["97.5 %"]]
|
||||
|
||||
#=====================
|
||||
# fishers test
|
||||
#=====================
|
||||
|
@ -431,17 +517,7 @@ for (i in data){
|
|||
, paste0("OR_fisher:", or_fisher, "--->","P-val_fisher:", pval_fisher )
|
||||
, paste0("Chi_sq_estimate:", est_chisq, "--->","P-val_chisq:", pval_chisq)))
|
||||
}
|
||||
|
||||
|
||||
i = "gene_p.leu159arg"
|
||||
|
||||
mut<-as.numeric(grepl(i,raw_data$all_muts_pza))
|
||||
# DV
|
||||
dst<-as.numeric(raw_data$pyrazinamide)
|
||||
# tablehttps://mail.google.com/mail/?tab=rm&ogbl
|
||||
table(dst, mut)
|
||||
|
||||
#=====================
|
||||
#=====================
|
||||
# fishers test
|
||||
#=====================
|
||||
#attributes(fisher.test(table(dst, mut)))
|
||||
|
@ -455,3 +531,108 @@ table(dst, mut)
|
|||
exact2x2(table(dst, mut),tsmethod="central")
|
||||
|
||||
|
||||
#=====================================================================
|
||||
# iterate over a df and then add these values
|
||||
#
|
||||
my_data = as.data.frame(gene_snps_unique)
|
||||
colnames(my_data) = "mutation"
|
||||
print(colnames(my_data))
|
||||
|
||||
perfectSeparation <- function(w) {
|
||||
if(grepl("fitted probabilities numerically 0 or 1 occurred",
|
||||
as.character(w))) {ww <<- ww+1}
|
||||
}
|
||||
|
||||
for(i in my_data$mutation) {
|
||||
print(paste0('snp to iterate over:', i))
|
||||
}
|
||||
|
||||
for(i in my_data$mutation) {
|
||||
print(paste0('snp to iterate over:', i))
|
||||
|
||||
#####
|
||||
# Run logistic regression
|
||||
#####
|
||||
|
||||
#*************
|
||||
# start logistic regression model building
|
||||
# set the IV and DV for the logistic regression model and model
|
||||
#*************
|
||||
# IV: corresponds to each unique snp (extracted using grep)
|
||||
mut = as.numeric(grepl(i,raw_data$dr_muts_pza))
|
||||
|
||||
# DV: pyrazinamide 0 or 1
|
||||
dst = as.numeric(raw_data$pyrazinamide)
|
||||
|
||||
tab = table(mut, dst)
|
||||
print(tab)
|
||||
|
||||
# glm model: with and without maxit
|
||||
model = tryCatch( glm(dst ~ mut
|
||||
, family = binomial
|
||||
#, control = glm.control(maxit = 1) # only used when required for one step estimator
|
||||
), warning = perfectSeparation)
|
||||
|
||||
model = glm(dst ~ mut, family = binomial)
|
||||
|
||||
print(summary(model))
|
||||
|
||||
#**********
|
||||
# extract relevant model output
|
||||
#**********
|
||||
# extract log OR i.e the Beta estimate of the logistic model for a given snp
|
||||
my_logor = summary(model)$coefficients[2,1]
|
||||
print(paste0('Beta:', my_logor))
|
||||
|
||||
# Dervive OR i.e exp(my_or) from the logistic model for a given snp
|
||||
#my_or = round(exp(summary(model)$coefficients[2,1]), roundto)
|
||||
my_or = exp(summary(model)$coefficients[2,1])
|
||||
print(paste0('OR:', my_or))
|
||||
|
||||
# extract SE of the logistic model for a given snp
|
||||
my_se = summary(model)$coefficients[2,2]
|
||||
print(paste0('SE:', my_se))
|
||||
|
||||
# extract Z of the logistic model for a given snp
|
||||
my_zval = summary(model)$coefficients[2,3]
|
||||
print(paste0('Z-value:', my_zval))
|
||||
|
||||
# extract P-value of the logistic model for a given snp
|
||||
my_pval = summary(model)$coefficients[2,4]
|
||||
print(paste0('P-value:', my_pval))
|
||||
|
||||
# extract confint interval of snp (2 steps, since the output is a named number)
|
||||
ci_mod = exp(confint(model))[2,]
|
||||
#my_ci = paste(ci_mod[["2.5 %"]], ",", ci_mod[["97.5 %"]])
|
||||
|
||||
my_ci_lower = ci_mod[["2.5 %"]]
|
||||
my_ci_upper = ci_mod[["97.5 %"]]
|
||||
|
||||
print(paste0('CI_lower:', my_ci_lower))
|
||||
print(paste0('CI_upper:', my_ci_upper))
|
||||
|
||||
#*************
|
||||
# Assign the regression output in the to df (meta_pza_pnca_snps_only)
|
||||
# you can use ('=' or '<-/->')
|
||||
#*************
|
||||
#my_data$logistic_logOR[my_data$mutation == i] = my_logor
|
||||
|
||||
my_or -> my_data$OR[my_data$mutation == i]
|
||||
|
||||
my_pval -> my_data$pvalue[my_data$mutation == i]
|
||||
|
||||
my_zval -> my_data$zvalue[my_data$mutation == i]
|
||||
|
||||
my_se -> my_data$logistic_se[my_data$mutation == i]
|
||||
|
||||
my_ci_lower -> my_data$ci_lower[my_data$mutation == i]
|
||||
|
||||
my_ci_upper -> my_data$ci_upper[my_data$mutation == i]
|
||||
|
||||
#=#=#=#=#=#=#=#
|
||||
# COMMENT: This assigns the relevant extracted output
|
||||
# to the df and fills NA where the mutation (row) doesn't exist
|
||||
# in my mutation list I am iterating over
|
||||
#=#=#=#=#=#=#=#
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue