all OR calcs using sapply and output as df
This commit is contained in:
parent
8f272bdc17
commit
18998092f4
1 changed files with 260 additions and 79 deletions
|
@ -1,5 +1,5 @@
|
||||||
#########################################################
|
#########################################################
|
||||||
# TASK: To compare OR from master data
|
# TASK: To compare OR from master snps
|
||||||
# chisq, fisher test and logistic and adjusted logistic
|
# chisq, fisher test and logistic and adjusted logistic
|
||||||
#########################################################
|
#########################################################
|
||||||
getwd()
|
getwd()
|
||||||
|
@ -28,10 +28,10 @@ outdir = paste0(datadir, '/', drug, '/', 'output')
|
||||||
in_filename = 'original_tanushree_data_v2.csv'
|
in_filename = 'original_tanushree_data_v2.csv'
|
||||||
#in_filename = 'mtb_gwas_v3.csv'
|
#in_filename = 'mtb_gwas_v3.csv'
|
||||||
infile = paste0(datadir, '/', in_filename)
|
infile = paste0(datadir, '/', in_filename)
|
||||||
cat(paste0('Reading infile1: raw data', ' ', infile) )
|
cat(paste0('Reading infile1: raw snps', ' ', infile) )
|
||||||
|
|
||||||
# infile2: _gene associated meta data file to extract valid snps and add calcs to.
|
# infile2: _gene associated meta snps file to extract valid snps and add calcs to.
|
||||||
# This is outfile3 from data_extraction.py
|
# This is outfile3 from snps_extraction.py
|
||||||
in_filename_metadata = paste0(tolower(gene), '_metadata.csv')
|
in_filename_metadata = paste0(tolower(gene), '_metadata.csv')
|
||||||
infile_metadata = paste0(outdir, '/', in_filename_metadata)
|
infile_metadata = paste0(outdir, '/', in_filename_metadata)
|
||||||
cat(paste0('Reading infile2: gene associated metadata:', infile_metadata))
|
cat(paste0('Reading infile2: gene associated metadata:', infile_metadata))
|
||||||
|
@ -39,17 +39,17 @@ cat(paste0('Reading infile2: gene associated metadata:', infile_metadata))
|
||||||
#===========
|
#===========
|
||||||
# output
|
# output
|
||||||
#===========
|
#===========
|
||||||
out_filename = paste0(tolower(gene),'_', 'meta_data_with_AF_OR.csv')
|
out_filename = paste0(tolower(gene),'_', 'af_or.csv')
|
||||||
outfile = paste0(outdir, '/', out_filename)
|
outfile = paste0(outdir, '/', out_filename)
|
||||||
cat(paste0('Output file with full path:', outfile))
|
cat(paste0('Output file with full path:', outfile))
|
||||||
#%% end of variable assignment for input and output files
|
#%% end of variable assignment for input and output files
|
||||||
|
|
||||||
#########################################################
|
#########################################################
|
||||||
# 1: Read master/raw data stored in Data/
|
# 1: Read master/raw snps stored in snps/
|
||||||
#####################################################
|
#####################################################
|
||||||
|
|
||||||
#===============
|
#===============
|
||||||
# Step 1: read raw data (all remove entries with NA in pza column)
|
# Step 1: read raw snps (all remove entries with NA in pza column)
|
||||||
#===============
|
#===============
|
||||||
raw_data_all = read.csv(infile, stringsAsFactors = F)
|
raw_data_all = read.csv(infile, stringsAsFactors = F)
|
||||||
|
|
||||||
|
@ -147,7 +147,6 @@ if(nrow(gene_snps_or) == expected_rows){
|
||||||
gene_snps_unique = unique(gene_snps_or$mutation)
|
gene_snps_unique = unique(gene_snps_or$mutation)
|
||||||
|
|
||||||
cat(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(gene_snps_unique)))
|
cat(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(gene_snps_unique)))
|
||||||
|
|
||||||
#=====================================
|
#=====================================
|
||||||
#OR calcs using the following 4
|
#OR calcs using the following 4
|
||||||
#1) chisq.test
|
#1) chisq.test
|
||||||
|
@ -163,7 +162,7 @@ cat(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(gene_
|
||||||
# Define OR function
|
# Define OR function
|
||||||
#x = as.numeric(mut)
|
#x = as.numeric(mut)
|
||||||
#y = dst
|
#y = dst
|
||||||
logistic_chisq_or = function(x,y){
|
custom_chisq_or = function(x,y){
|
||||||
tab = as.matrix(table(x,y))
|
tab = as.matrix(table(x,y))
|
||||||
a = tab[2,2]
|
a = tab[2,2]
|
||||||
if (a==0){ a<-0.5}
|
if (a==0){ a<-0.5}
|
||||||
|
@ -179,7 +178,7 @@ logistic_chisq_or = function(x,y){
|
||||||
|
|
||||||
#========================
|
#========================
|
||||||
# TEST WITH ONE
|
# TEST WITH ONE
|
||||||
|
#========================
|
||||||
i = "pnca_p.trp68gly"
|
i = "pnca_p.trp68gly"
|
||||||
i = "pnca_p.gln10pro"
|
i = "pnca_p.gln10pro"
|
||||||
i = "pnca_p.leu159arg"
|
i = "pnca_p.leu159arg"
|
||||||
|
@ -211,6 +210,11 @@ table(mut, dst, sid)
|
||||||
#============================
|
#============================
|
||||||
# compare OR
|
# compare OR
|
||||||
chisq.test(table(mut,dst))
|
chisq.test(table(mut,dst))
|
||||||
|
chisq.test(table(mut,dst)) $ statistic
|
||||||
|
|
||||||
|
f = chisq.test(table(mut,dst)) $ statistic
|
||||||
|
chisq.test(dst, mut) $ statistic
|
||||||
|
|
||||||
fisher.test(table(mut, dst))
|
fisher.test(table(mut, dst))
|
||||||
fisher.test(table(mut, dst))$p.value
|
fisher.test(table(mut, dst))$p.value
|
||||||
fisher.test(table(mut, dst))$estimate
|
fisher.test(table(mut, dst))$estimate
|
||||||
|
@ -219,53 +223,79 @@ logistic_chisq_or(mut,dst)
|
||||||
# logistic or
|
# logistic or
|
||||||
summary(model<-glm(dst ~ mut, family = binomial))
|
summary(model<-glm(dst ~ mut, family = binomial))
|
||||||
or_logistic = exp(summary(model)$coefficients[2,1]); print(or_logistic)
|
or_logistic = exp(summary(model)$coefficients[2,1]); print(or_logistic)
|
||||||
pval_logistic = summary(model)$coefficients[2,4]; print(pval_logistic)
|
pval_logistic_maxit = summary(model)$coefficients[2,4]; print(pval_logistic_maxit)
|
||||||
|
|
||||||
# adjusted logistic or
|
# extract SE of the logistic model for a given snp
|
||||||
|
logistic_se = summary(model)$coefficients[2,2]
|
||||||
|
print(paste0('SE:', logistic_se))
|
||||||
|
|
||||||
|
# extract Z of the logistic model for a given snp
|
||||||
|
logistic_zval = summary(model)$coefficients[2,3]
|
||||||
|
print(paste0('Z-value:', logistic_zval))
|
||||||
|
|
||||||
|
|
||||||
|
# extract confint interval of snp (2 steps, since the output is a named number)
|
||||||
|
ci_mod = exp(confint(model))[2,]
|
||||||
|
print(paste0('CI:', ci_mod))
|
||||||
|
#logistic_ci = paste(ci_mod[["2.5 %"]], ",", ci_mod[["97.5 %"]])
|
||||||
|
|
||||||
|
logistic_ci_lower = ci_mod[["2.5 %"]]
|
||||||
|
logistic_ci_upper = ci_mod[["97.5 %"]]
|
||||||
|
|
||||||
|
print(paste0('CI_lower:', logistic_ci_lower))
|
||||||
|
print(paste0('CI_upper:', logistic_ci_upper))
|
||||||
|
|
||||||
|
|
||||||
|
# adjusted logistic or: doesn't seem to make a difference
|
||||||
summary(model2<-glm(dst ~ mut + sid, family = binomial))
|
summary(model2<-glm(dst ~ mut + sid, family = binomial))
|
||||||
or_logistic2 = exp(summary(model2)$coefficients[2,1]); print(or_logistic2)
|
or_logistic2 = exp(summary(model2)$coefficients[2,1]); print(or_logistic2)
|
||||||
pval_logistic2 = summary(model2)$coefficients[2,4]; print(pval_logistic2)
|
pval_logistic2 = summary(model2)$coefficients[2,4]; print(pval_logistic2)
|
||||||
|
|
||||||
#=========================
|
#============ looping with sapply
|
||||||
|
#####################
|
||||||
|
# iterate: subset
|
||||||
|
#####################
|
||||||
|
|
||||||
ors = sapply(gene_snps_unique,function(m){
|
snps_test = c("pnca_p.trp68gly", "pnca_p.leu4ser", "pnca_p.leu159arg","pnca_p.his57arg" )
|
||||||
|
|
||||||
|
snps = snps_test[1:4]
|
||||||
|
|
||||||
|
snps
|
||||||
|
|
||||||
|
|
||||||
|
ors = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
logistic_chisq_or(mut,dst)
|
logistic_chisq_or(mut,dst)
|
||||||
})
|
})
|
||||||
|
|
||||||
ors
|
ors
|
||||||
|
|
||||||
pvals = sapply(gene_snps_unique,function(m){
|
pvals = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
fisher.test(mut,dst)$p.value
|
fisher.test(mut,dst)$p.value
|
||||||
})
|
})
|
||||||
|
|
||||||
pvals
|
pvals
|
||||||
|
|
||||||
afs = sapply(gene_snps_unique,function(m){
|
afs = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
mean(mut)
|
mean(mut)
|
||||||
})
|
})
|
||||||
|
|
||||||
afs
|
afs
|
||||||
|
|
||||||
# logistic or
|
## logistic or
|
||||||
ors_logistic = sapply(gene_snps_unique,function(m){
|
ors_logistic = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
model<-glm(dst ~ mut, family = binomial)
|
model<-glm(dst ~ mut, family = binomial)
|
||||||
or_logistic = exp(summary(model)$coefficients[2,1])
|
or_logistic = exp(summary(model)$coefficients[2,1])
|
||||||
#pval_logistic = summary(model)$coefficients[2,4]
|
|
||||||
#logistic_se = summary(model)$coefficients[2,2]
|
|
||||||
#logistic_zval = summary(model)$coefficients[2,3]
|
|
||||||
#ci_mod = exp(confint(model))[2,]
|
|
||||||
#logistic_ci_lower = ci_mod[["2.5 %"]]
|
|
||||||
#logistic_ci_upper = ci_mod[["97.5 %"]]
|
|
||||||
})
|
})
|
||||||
ors_logistic
|
ors_logistic
|
||||||
head(ors_logistic); head(names(ors_logistic))
|
head(ors_logistic); head(names(ors_logistic))
|
||||||
|
|
||||||
## logistic p-value
|
## logistic p-value
|
||||||
pvals_logistic = sapply(gene_snps_unique,function(m){
|
pvals_logistic = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
model<-glm(dst ~ mut , family = binomial)
|
model<-glm(dst ~ mut , family = binomial)
|
||||||
pval_logistic = summary(model)$coefficients[2,4]
|
pval_logistic = summary(model)$coefficients[2,4]
|
||||||
|
@ -274,7 +304,7 @@ pvals_logistic = sapply(gene_snps_unique,function(m){
|
||||||
head(pvals_logistic); head(names(pvals_logistic))
|
head(pvals_logistic); head(names(pvals_logistic))
|
||||||
|
|
||||||
## logistic se
|
## logistic se
|
||||||
se_logistic = sapply(gene_snps_unique,function(m){
|
se_logistic = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
model<-glm(dst ~ mut , family = binomial)
|
model<-glm(dst ~ mut , family = binomial)
|
||||||
logistic_se = summary(model)$coefficients[2,2]
|
logistic_se = summary(model)$coefficients[2,2]
|
||||||
|
@ -293,7 +323,7 @@ zval_logistic = sapply(gene_snps_unique,function(m){
|
||||||
head(zval_logistic); head(names(zval_logistic))
|
head(zval_logistic); head(names(zval_logistic))
|
||||||
|
|
||||||
## logistic ci - lower bound
|
## logistic ci - lower bound
|
||||||
ci_lb_logistic = sapply(gene_snps_unique,function(m){
|
ci_lb_logistic = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
model<-glm(dst ~ mut , family = binomial)
|
model<-glm(dst ~ mut , family = binomial)
|
||||||
ci_mod = exp(confint(model))[2,]
|
ci_mod = exp(confint(model))[2,]
|
||||||
|
@ -303,7 +333,7 @@ ci_lb_logistic = sapply(gene_snps_unique,function(m){
|
||||||
head(ci_lb_logistic); head(names(ci_lb_logistic))
|
head(ci_lb_logistic); head(names(ci_lb_logistic))
|
||||||
|
|
||||||
## logistic ci - upper bound
|
## logistic ci - upper bound
|
||||||
ci_ub_logistic = sapply(gene_snps_unique,function(m){
|
ci_ub_logistic = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
model<-glm(dst ~ mut , family = binomial)
|
model<-glm(dst ~ mut , family = binomial)
|
||||||
ci_mod = exp(confint(model))[2,]
|
ci_mod = exp(confint(model))[2,]
|
||||||
|
@ -314,7 +344,7 @@ ci_ub_logistic = sapply(gene_snps_unique,function(m){
|
||||||
head(ci_ub_logistic); head(names(ci_ub_logistic))
|
head(ci_ub_logistic); head(names(ci_ub_logistic))
|
||||||
|
|
||||||
# logistic adj # Doesn't seem to make a difference
|
# logistic adj # Doesn't seem to make a difference
|
||||||
logistic_ors2 = sapply(gene_snps_unique,function(m){
|
logistic_ors2 = sapply(snps,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
c = raw_data$id[mut]
|
c = raw_data$id[mut]
|
||||||
sid = grepl(paste(c,collapse="|"), raw_data$id)
|
sid = grepl(paste(c,collapse="|"), raw_data$id)
|
||||||
|
@ -327,50 +357,106 @@ logistic_ors2
|
||||||
|
|
||||||
or_logistic2; pval_logistic2
|
or_logistic2; pval_logistic2
|
||||||
|
|
||||||
|
|
||||||
head(logistic_ors)
|
head(logistic_ors)
|
||||||
#====================================
|
#===========================================================
|
||||||
# logistic
|
#%%
|
||||||
summary(model<-glm(dst ~ mut
|
# sapply with multiple values
|
||||||
, family = binomial
|
|
||||||
#, control = glm.control(maxit = 1)
|
|
||||||
#, options(warn = 1)
|
|
||||||
))
|
|
||||||
or_logistic = exp(summary(model)$coefficients[2,1]); print(or_logistic)
|
|
||||||
pval_logistic_maxit = summary(model)$coefficients[2,4]; print(pval_logistic_maxit)
|
|
||||||
|
|
||||||
# extract SE of the logistic model for a given snp
|
#https://gist.github.com/primaryobjects/33adabc337edd67b4a8d
|
||||||
logistic_se = summary(model)$coefficients[2,2]
|
|
||||||
print(paste0('SE:', logistic_se))
|
|
||||||
|
|
||||||
|
|
||||||
# extract Z of the logistic model for a given snp
|
|
||||||
logistic_zval = summary(model)$coefficients[2,3]
|
|
||||||
print(paste0('Z-value:', logistic_zval))
|
|
||||||
|
|
||||||
|
|
||||||
# extract confint interval of snp (2 steps, since the output is a named number)
|
|
||||||
ci_mod = exp(confint(model))[2,]
|
|
||||||
print(paste0('CI:', ci_mod))
|
|
||||||
#logistic_ci = paste(ci_mod[["2.5 %"]], ",", ci_mod[["97.5 %"]])
|
|
||||||
|
|
||||||
logistic_ci_lower = ci_mod[["2.5 %"]]
|
|
||||||
logistic_ci_upper = ci_mod[["97.5 %"]]
|
|
||||||
|
|
||||||
print(paste0('CI_lower:', logistic_ci_lower))
|
|
||||||
print(paste0('CI_upper:', logistic_ci_upper))
|
|
||||||
|
|
||||||
#####################
|
|
||||||
# iterate: subset
|
|
||||||
#####################
|
|
||||||
|
|
||||||
snps_test = c("pnca_p.trp68gly", "pnca_p.leu4ser", "pnca_p.leu159arg","pnca_p.his57arg" )
|
snps_test = c("pnca_p.trp68gly", "pnca_p.leu4ser", "pnca_p.leu159arg","pnca_p.his57arg" )
|
||||||
|
|
||||||
data = snps_test[1:2]
|
snps = snps_test[1:4]
|
||||||
|
|
||||||
data
|
snps
|
||||||
################# start loop
|
|
||||||
for (i in data){
|
# DV: pyrazinamide 0 or 1
|
||||||
|
dst = raw_data[[drug]]
|
||||||
|
|
||||||
|
# yayy works!
|
||||||
|
testdf = data.frame()
|
||||||
|
|
||||||
|
x = sapply(snps,function(m){
|
||||||
|
|
||||||
|
df = data.frame()
|
||||||
|
|
||||||
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
|
model<-glm(dst ~ mut, family = binomial)
|
||||||
|
|
||||||
|
|
||||||
|
# allele frequency
|
||||||
|
afs = mean(mut)
|
||||||
|
|
||||||
|
# logistic model
|
||||||
|
beta_logistic = summary(model)$coefficients[2,1]
|
||||||
|
|
||||||
|
or_logistic = exp(summary(model)$coefficients[2,1])
|
||||||
|
print(paste0('logistic OR:', or_logistic))
|
||||||
|
|
||||||
|
pval_logistic = summary(model)$coefficients[2,4]
|
||||||
|
print(paste0('logistic pval:', pval_logistic))
|
||||||
|
|
||||||
|
se_logistic = summary(model)$coefficients[2,2]
|
||||||
|
zval_logistic = summary(model)$coefficients[2,3]
|
||||||
|
ci_mod = exp(confint(model))[2,]
|
||||||
|
ci_lower_logistic = ci_mod[["2.5 %"]]
|
||||||
|
ci_upper_logistic = ci_mod[["97.5 %"]]
|
||||||
|
|
||||||
|
# custom_chisq and fisher: OR p-value and CI
|
||||||
|
or_mychisq = custom_chisq_or(dst, mut)
|
||||||
|
|
||||||
|
or_fisher = fisher.test(dst, mut)$estimate
|
||||||
|
or_fisher = or_fisher[[1]]
|
||||||
|
|
||||||
|
pval_fisher = fisher.test(dst, mut)$p.value
|
||||||
|
|
||||||
|
ci_lower_fisher = fisher.test(dst, mut)$conf.int[1]
|
||||||
|
ci_upper_fisher = fisher.test(dst, mut)$conf.int[2]
|
||||||
|
|
||||||
|
# chi sq estimates
|
||||||
|
estimate_chisq = chisq.test(dst, mut)$statistic; estimate_chisq
|
||||||
|
est_chisq = estimate_chisq[[1]]; print(est_chisq)
|
||||||
|
|
||||||
|
pval_chisq = chisq.test(dst, mut)$p.value
|
||||||
|
|
||||||
|
#build a row to append to df
|
||||||
|
row = data.frame(mutation = m
|
||||||
|
, af = afs
|
||||||
|
, beta_logistic = beta_logistic
|
||||||
|
, or_logistic = or_logistic
|
||||||
|
, pval_logistic = pval_logistic
|
||||||
|
, se_logistic = se_logistic
|
||||||
|
, zval_logistic = zval_logistic
|
||||||
|
, ci_low_logistic = ci_lower_logistic
|
||||||
|
, ci_hi_logistic = ci_upper_logistic
|
||||||
|
, or_mychisq = or_mychisq
|
||||||
|
, or_fisher = or_fisher
|
||||||
|
, pval_fisher = pval_fisher
|
||||||
|
, ci_low_fisher= ci_lower_fisher
|
||||||
|
, ci_hi_fisher = ci_upper_fisher
|
||||||
|
, est_chisq = est_chisq
|
||||||
|
, pval_chisq = pval_chisq
|
||||||
|
)
|
||||||
|
#print(row)
|
||||||
|
|
||||||
|
testdf <<- rbind(testdf, row)
|
||||||
|
|
||||||
|
})
|
||||||
|
|
||||||
|
write.csv(testdf, 'test_ors.csv')
|
||||||
|
#=================================
|
||||||
|
####################
|
||||||
|
# iterate: subset
|
||||||
|
#####################
|
||||||
|
print(paste0('subset to iterate over;', snps))
|
||||||
|
|
||||||
|
# start loop
|
||||||
|
perfectSeparation <- function(w) {
|
||||||
|
if(grepl("fitted probabilities numerically 0 or 1 occurred",
|
||||||
|
as.character(w))) {ww <<- ww+1}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i in snps){
|
||||||
|
|
||||||
print(i)
|
print(i)
|
||||||
|
|
||||||
|
@ -386,7 +472,6 @@ for (i in data){
|
||||||
# table
|
# table
|
||||||
print(table(dst, mut))
|
print(table(dst, mut))
|
||||||
|
|
||||||
|
|
||||||
#=====================
|
#=====================
|
||||||
# logistic regression, glm.control(maxit = n)
|
# logistic regression, glm.control(maxit = n)
|
||||||
#https://stats.stackexchange.com/questions/11109/how-to-deal-with-perfect-separation-in-logistic-regression
|
#https://stats.stackexchange.com/questions/11109/how-to-deal-with-perfect-separation-in-logistic-regression
|
||||||
|
@ -405,6 +490,7 @@ for (i in data){
|
||||||
ci_mod = exp(confint(model))[2,]
|
ci_mod = exp(confint(model))[2,]
|
||||||
logistic_ci_lower = ci_mod[["2.5 %"]]
|
logistic_ci_lower = ci_mod[["2.5 %"]]
|
||||||
logistic_ci_upper = ci_mod[["97.5 %"]]
|
logistic_ci_upper = ci_mod[["97.5 %"]]
|
||||||
|
|
||||||
#=====================
|
#=====================
|
||||||
# fishers test
|
# fishers test
|
||||||
#=====================
|
#=====================
|
||||||
|
@ -431,17 +517,7 @@ for (i in data){
|
||||||
, paste0("OR_fisher:", or_fisher, "--->","P-val_fisher:", pval_fisher )
|
, paste0("OR_fisher:", or_fisher, "--->","P-val_fisher:", pval_fisher )
|
||||||
, paste0("Chi_sq_estimate:", est_chisq, "--->","P-val_chisq:", pval_chisq)))
|
, paste0("Chi_sq_estimate:", est_chisq, "--->","P-val_chisq:", pval_chisq)))
|
||||||
}
|
}
|
||||||
|
#=====================
|
||||||
|
|
||||||
i = "gene_p.leu159arg"
|
|
||||||
|
|
||||||
mut<-as.numeric(grepl(i,raw_data$all_muts_pza))
|
|
||||||
# DV
|
|
||||||
dst<-as.numeric(raw_data$pyrazinamide)
|
|
||||||
# tablehttps://mail.google.com/mail/?tab=rm&ogbl
|
|
||||||
table(dst, mut)
|
|
||||||
|
|
||||||
#=====================
|
|
||||||
# fishers test
|
# fishers test
|
||||||
#=====================
|
#=====================
|
||||||
#attributes(fisher.test(table(dst, mut)))
|
#attributes(fisher.test(table(dst, mut)))
|
||||||
|
@ -455,3 +531,108 @@ table(dst, mut)
|
||||||
exact2x2(table(dst, mut),tsmethod="central")
|
exact2x2(table(dst, mut),tsmethod="central")
|
||||||
|
|
||||||
|
|
||||||
|
#=====================================================================
|
||||||
|
# iterate over a df and then add these values
|
||||||
|
#
|
||||||
|
my_data = as.data.frame(gene_snps_unique)
|
||||||
|
colnames(my_data) = "mutation"
|
||||||
|
print(colnames(my_data))
|
||||||
|
|
||||||
|
perfectSeparation <- function(w) {
|
||||||
|
if(grepl("fitted probabilities numerically 0 or 1 occurred",
|
||||||
|
as.character(w))) {ww <<- ww+1}
|
||||||
|
}
|
||||||
|
|
||||||
|
for(i in my_data$mutation) {
|
||||||
|
print(paste0('snp to iterate over:', i))
|
||||||
|
}
|
||||||
|
|
||||||
|
for(i in my_data$mutation) {
|
||||||
|
print(paste0('snp to iterate over:', i))
|
||||||
|
|
||||||
|
#####
|
||||||
|
# Run logistic regression
|
||||||
|
#####
|
||||||
|
|
||||||
|
#*************
|
||||||
|
# start logistic regression model building
|
||||||
|
# set the IV and DV for the logistic regression model and model
|
||||||
|
#*************
|
||||||
|
# IV: corresponds to each unique snp (extracted using grep)
|
||||||
|
mut = as.numeric(grepl(i,raw_data$dr_muts_pza))
|
||||||
|
|
||||||
|
# DV: pyrazinamide 0 or 1
|
||||||
|
dst = as.numeric(raw_data$pyrazinamide)
|
||||||
|
|
||||||
|
tab = table(mut, dst)
|
||||||
|
print(tab)
|
||||||
|
|
||||||
|
# glm model: with and without maxit
|
||||||
|
model = tryCatch( glm(dst ~ mut
|
||||||
|
, family = binomial
|
||||||
|
#, control = glm.control(maxit = 1) # only used when required for one step estimator
|
||||||
|
), warning = perfectSeparation)
|
||||||
|
|
||||||
|
model = glm(dst ~ mut, family = binomial)
|
||||||
|
|
||||||
|
print(summary(model))
|
||||||
|
|
||||||
|
#**********
|
||||||
|
# extract relevant model output
|
||||||
|
#**********
|
||||||
|
# extract log OR i.e the Beta estimate of the logistic model for a given snp
|
||||||
|
my_logor = summary(model)$coefficients[2,1]
|
||||||
|
print(paste0('Beta:', my_logor))
|
||||||
|
|
||||||
|
# Dervive OR i.e exp(my_or) from the logistic model for a given snp
|
||||||
|
#my_or = round(exp(summary(model)$coefficients[2,1]), roundto)
|
||||||
|
my_or = exp(summary(model)$coefficients[2,1])
|
||||||
|
print(paste0('OR:', my_or))
|
||||||
|
|
||||||
|
# extract SE of the logistic model for a given snp
|
||||||
|
my_se = summary(model)$coefficients[2,2]
|
||||||
|
print(paste0('SE:', my_se))
|
||||||
|
|
||||||
|
# extract Z of the logistic model for a given snp
|
||||||
|
my_zval = summary(model)$coefficients[2,3]
|
||||||
|
print(paste0('Z-value:', my_zval))
|
||||||
|
|
||||||
|
# extract P-value of the logistic model for a given snp
|
||||||
|
my_pval = summary(model)$coefficients[2,4]
|
||||||
|
print(paste0('P-value:', my_pval))
|
||||||
|
|
||||||
|
# extract confint interval of snp (2 steps, since the output is a named number)
|
||||||
|
ci_mod = exp(confint(model))[2,]
|
||||||
|
#my_ci = paste(ci_mod[["2.5 %"]], ",", ci_mod[["97.5 %"]])
|
||||||
|
|
||||||
|
my_ci_lower = ci_mod[["2.5 %"]]
|
||||||
|
my_ci_upper = ci_mod[["97.5 %"]]
|
||||||
|
|
||||||
|
print(paste0('CI_lower:', my_ci_lower))
|
||||||
|
print(paste0('CI_upper:', my_ci_upper))
|
||||||
|
|
||||||
|
#*************
|
||||||
|
# Assign the regression output in the to df (meta_pza_pnca_snps_only)
|
||||||
|
# you can use ('=' or '<-/->')
|
||||||
|
#*************
|
||||||
|
#my_data$logistic_logOR[my_data$mutation == i] = my_logor
|
||||||
|
|
||||||
|
my_or -> my_data$OR[my_data$mutation == i]
|
||||||
|
|
||||||
|
my_pval -> my_data$pvalue[my_data$mutation == i]
|
||||||
|
|
||||||
|
my_zval -> my_data$zvalue[my_data$mutation == i]
|
||||||
|
|
||||||
|
my_se -> my_data$logistic_se[my_data$mutation == i]
|
||||||
|
|
||||||
|
my_ci_lower -> my_data$ci_lower[my_data$mutation == i]
|
||||||
|
|
||||||
|
my_ci_upper -> my_data$ci_upper[my_data$mutation == i]
|
||||||
|
|
||||||
|
#=#=#=#=#=#=#=#
|
||||||
|
# COMMENT: This assigns the relevant extracted output
|
||||||
|
# to the df and fills NA where the mutation (row) doesn't exist
|
||||||
|
# in my mutation list I am iterating over
|
||||||
|
#=#=#=#=#=#=#=#
|
||||||
|
|
||||||
|
}
|
Loading…
Add table
Add a link
Reference in a new issue