modified extraction to be explicit for extracting nsSNP for specified gene

This commit is contained in:
Tanushree Tunstall 2020-07-08 18:47:22 +01:00
parent 436125745d
commit 172fa18420

View file

@ -80,7 +80,19 @@ gene = args.gene
#gene = 'pncA'
gene_match = gene + '_p.'
print('mut pattern for gene', gene, ':', gene_match)
nssnp_match = gene_match+'[A-Z]{3}[0-9]+[A-Z]{3}'
print('nsSNP for gene', gene, ':', nssnp_match)
wt_regex = gene_match.lower()+'(\w{3})'
print('wt regex:', wt_regex)
mut_regex = r'\d+(\w{3})$'
print('mt regex:', mut_regex)
pos_regex = r'(\d+)'
print('position regex:', pos_regex)
# building cols to extract
dr_muts_col = 'dr_mutations_' + drug
@ -105,10 +117,10 @@ outdir = datadir + '/' + drug + '/' + 'output'
#=======
# input
#=======
#in_filename = 'original_tanushree_data_v2.csv' #19k
in_filename = 'mtb_gwas_meta_v3.csv' #33k
infile = datadir + '/' + in_filename
print('Input file: ', infile
#in_filename_master_master = 'original_tanushree_data_v2.csv' #19k
in_filename_master = 'mtb_gwas_meta_v3.csv' #33k
infile_master = datadir + '/' + in_filename_master
print('Input file: ', infile_master
, '\n============================================================')
#=======
@ -122,14 +134,13 @@ print('Output filename: in the respective sections'
#%%end of variable assignment for input and output files
#=======================================================================
#%% Read input file
master_data = pd.read_csv(infile, sep = ',')
master_data = pd.read_csv(infile_master, sep = ',')
# column names
#list(master_data.columns)
# extract elevant columns to extract from meta data related to the drug
if in_filename == 'original_tanushree_data_v2.csv':
if in_filename_master == 'original_tanushree_data_v2.csv':
meta_data = master_data[['id'
, 'country'
, 'lineage'
@ -139,7 +150,7 @@ if in_filename == 'original_tanushree_data_v2.csv':
, dr_muts_col
, other_muts_col]]
if in_filename == 'mtb_gwas_meta_v3.csv':
if in_filename_master == 'mtb_gwas_meta_v3.csv':
core_cols = ['id'
, 'country'
, 'country2'
@ -168,7 +179,8 @@ if in_filename == 'mtb_gwas_meta_v3.csv':
meta_data = master_data[cols_to_extract]
del(master_data, variable_based_cols, cols_to_extract)
print('Extracted meta data:', meta_data.shape)
print('Extracted meta data from filename:', in_filename_master
, '\nDim:', meta_data.shape)
# checks and results
total_samples = meta_data['id'].nunique()
@ -193,7 +205,7 @@ print('RESULT: Sus and Res samples:\n', meta_data[drug].value_counts()
, '\n===========================================================')
#%%
# !!!IMPORTANT!!! sanity check:
# IMPORTANT sanity check:
# This is to find out how many samples have 1 and more than 1 mutation,so you
# can use it to check if your data extraction process for dr_muts
# and other_muts has worked correctly AND also to check the dim of the
@ -203,8 +215,7 @@ print('RESULT: Sus and Res samples:\n', meta_data[drug].value_counts()
#========
# First: counting <gene_match> mutations in dr_muts_col column
#========
print('Now counting WT &', gene_match, 'muts within the column:', dr_muts_col)
print('Now counting WT &', nssnp_match, 'muts within the column:', dr_muts_col)
# drop na and extract a clean df
clean_df = meta_data.dropna(subset=[dr_muts_col])
@ -222,11 +233,14 @@ dr_gene_count = 0
wt = 0
id_dr = []
id2_dr = []
#nssnp_match_regex = re.compile(nssnp_match)
for i, id in enumerate(clean_df.id):
#print (i, id)
#id_dr.append(id)
count_gene_dr = clean_df[dr_muts_col].iloc[i].count(gene_match)
#count_gene_dr = clean_df[dr_muts_col].iloc[i].count(gene_match) # can include stop muts
count_gene_dr = len(re.findall(nssnp_match, clean_df[dr_muts_col].iloc[i], re.IGNORECASE))
#print(count_gene_dr)
if count_gene_dr > 0:
id_dr.append(id)
if count_gene_dr > 1:
@ -238,8 +252,8 @@ for i, id in enumerate(clean_df.id):
print('RESULTS:')
print('Total WT in dr_muts_col:', wt)
print('Total matches of', gene_match, 'in dr_muts_col:', dr_gene_count)
print('Total samples with > 1', gene_match, 'muts in dr_muts_col:', len(id2_dr) )
print('Total matches of', gene, 'SNP matches in', dr_muts_col, ':', dr_gene_count)
print('Total samples with > 1', gene, 'muts in dr_muts_col:', len(id2_dr) )
print('=================================================================')
del(clean_df, na_count, i, id, wt, id2_dr, count_gene_dr, count_wt)
@ -247,8 +261,7 @@ del(clean_df, na_count, i, id, wt, id2_dr, count_gene_dr, count_wt)
#========
# Second: counting <gene_match> mutations in dr_muts_col column
#========
print('Now counting WT &', gene_match, 'muts within the column:', other_muts_col)
print('Now counting WT &', nssnp_match, 'muts within the column:', other_muts_col)
# drop na and extract a clean df
clean_df = meta_data.dropna(subset=[other_muts_col])
@ -270,7 +283,8 @@ id2_other = []
for i, id in enumerate(clean_df.id):
#print (i, id)
#id_other.append(id)
count_gene_other = clean_df[other_muts_col].iloc[i].count(gene_match)
#count_gene_other = clean_df[other_muts_col].iloc[i].count(gene_match) # can include stop muts
count_gene_other = len(re.findall(nssnp_match, clean_df[other_muts_col].iloc[i], re.IGNORECASE))
if count_gene_other > 0:
id_other.append(id)
if count_gene_other > 1:
@ -282,8 +296,8 @@ for i, id in enumerate(clean_df.id):
print('RESULTS:')
print('Total WT in other_muts_col:', wt_other)
print('Total matches of', gene_match, 'in', other_muts_col, ':', other_gene_count)
print('Total samples with > 1', gene_match, 'muts in other_muts_col:', len(id2_other) )
print('Total matches of', gene, 'SNP matches in', other_muts_col, ':', other_gene_count)
print('Total samples with > 1', gene, 'muts in other_muts_col:', len(id2_other) )
print('=================================================================')
print('Predicting total no. of rows in the curated df:', dr_gene_count + other_gene_count
@ -297,14 +311,12 @@ del(i, id, wt_other, clean_df, na_count, id2_other, count_gene_other, count_wt)
# extracting dr and other muts separately along with the common cols
#############
print('Extracting dr_muts from col:', dr_muts_col, 'with other meta_data')
print('gene to extract:', gene_match )
print('muts to extract:', nssnp_match )
#===============
# dr mutations: extract gene_match entries with meta data and ONLY dr_muts col
#===============
# FIXME: replace drug with variable containing the drug name
# !!! important !!!
if in_filename == 'original_tanushree_data_v2.csv':
if in_filename_master == 'original_tanushree_data_v2.csv':
meta_data_dr = meta_data[['id'
,'country'
,'lineage'
@ -312,7 +324,7 @@ if in_filename == 'original_tanushree_data_v2.csv':
,'drtype'
, drug
, dr_muts_col]]
if in_filename == 'mtb_gwas_meta_v3.csv':
if in_filename_master == 'mtb_gwas_meta_v3.csv':
dr_based_cols = [drug, dr_muts_col]
cols_to_extract = core_cols + dr_based_cols
print('Extracting', len(cols_to_extract), 'columns from meta data')
@ -329,16 +341,10 @@ else:
, '\n===============================================================')
sys.exit()
# FIXME FIXME FIXME FIXME
# Extract within this the gene of interest using string match
#meta_gene_dr = meta_data.loc[meta_data[dr_muts_col].str.contains('gene_match*', na = False)]
meta_gene_dr = meta_data_dr.loc[meta_data_dr[dr_muts_col].str.contains(gene_match, na = False)]
print('gene_match in dr:', len(meta_gene_dr))
#!!!!! USE THIS ONCE VERIFIED!!!!
meta_gene_dr_snp = meta_data_dr.loc[meta_data_dr[dr_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False)]
print('gene_snp_match in dr:', len(meta_gene_dr_snp))
#!!!!! USE THIS ONCE VERIFIED!!!!
# Extract within this the nsSNPs for gene of interest using string match
#meta_gene_dr = meta_data_dr.loc[meta_data_dr[dr_muts_col].str.contains(gene_match, na = False)]
meta_gene_dr = meta_data_dr.loc[meta_data_dr[dr_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False)]
print('gene_snp_match in dr:', len(meta_gene_dr))
dr_id = meta_gene_dr['id'].unique()
print('RESULT: No. of samples with dr muts in pncA:', len(dr_id))
@ -355,11 +361,12 @@ else:
dr_id = pd.Series(dr_id)
#=================
# other mutations: extract gene_match entries from other_muts_col
# other mutations: extract nssnp_match entries from other_muts_col
#==================
print('Extracting other_muts from:', other_muts_col,'with other meta_data')
print('muts to extract:', nssnp_match)
if in_filename == 'original_tanushree_data_v2.csv':
if in_filename_master == 'original_tanushree_data_v2.csv':
meta_data_other = meta_data[['id'
, 'country'
, 'lineage'
@ -368,7 +375,7 @@ if in_filename == 'original_tanushree_data_v2.csv':
, drug
, other_muts_col]]
if in_filename == 'mtb_gwas_meta_v3.csv':
if in_filename_master == 'mtb_gwas_meta_v3.csv':
other_based_cols = [drug, other_muts_col]
cols_to_extract = core_cols + other_based_cols
print('Extracting', len(cols_to_extract), 'columns from meta data')
@ -385,16 +392,11 @@ else:
, '\n===============================================================')
sys.exit()
# FIXME FIXME FIXME FIXME
# Extract within this the gene of interest using string match
meta_gene_other = meta_data_other.loc[meta_data_other[other_muts_col].str.contains(gene_match, na = False)]
print('gene_match in other:', len(meta_gene_other))
# Extract within this nSSNP for gene of interest using string match
#meta_gene_other = meta_data_other.loc[meta_data_other[other_muts_col].str.contains(gene_match, na = False)]
meta_gene_other = meta_data_other.loc[meta_data_other[other_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False)]
print('gene_snp_match in other:', len(meta_gene_other))
#!!!!! USE THIS ONCE VERIFIED!!!!
meta_gene_other_snp = meta_data_other.loc[meta_data_other[other_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False)]
print('gene_snp_match in other:', len(meta_gene_other_snp))
#!!!!! USE THIS ONCE VERIFIED!!!!
other_id = meta_gene_other['id'].unique()
print('RESULT: No. of samples with other muts:', len(other_id))
@ -445,7 +447,6 @@ print('Expected no. of gene samples:', expected_gene_samples
out_filename_cid = gene.lower() + '_common_ids.csv'
outfile_cid = outdir + '/' + out_filename_cid
#FIXME: CHECK line len(common_ids)
print('Writing file:'
, '\nFile:', outfile_cid
, '\nNo. of rows:', len(common_ids)
@ -458,12 +459,12 @@ del(out_filename_cid)
# clear variables
del(dr_id, other_id, meta_data_dr, meta_data_other, common_ids, common_mut_ids, common_ids2)
#%% Now extract 'all' pncA mutations: i.e 'gene_match*'
print('extracting from string match:', gene_match, 'mutations from cols:\n'
#%% Now extract 'all' gene specific nsSNP mutations: i.e 'nssnp_match'
print('Extracting nsSNP match:', gene, 'mutations from cols:\n'
, dr_muts_col, 'and', other_muts_col, 'using string match:'
, '\n===================================================================')
#meta_gene_all = meta_data.loc[meta_data[dr_muts_col].str.contains(gene_match) | meta_data[other_muts_col].str.contains(gene_match) ]
meta_gene_all = meta_data.loc[meta_data[dr_muts_col].str.contains(gene_match, na = False) | meta_data[other_muts_col].str.contains(gene_match, na = False) ]
#meta_gene_all = meta_data.loc[meta_data[dr_muts_col].str.contains(gene_match, na = False) | meta_data[other_muts_col].str.contains(gene_match, na = False) ]
meta_gene_all = meta_data.loc[meta_data[dr_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False) | meta_data[other_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False) ]
extracted_gene_samples = meta_gene_all['id'].nunique()
print('RESULT: actual no. of gene samples extracted:', extracted_gene_samples
@ -472,7 +473,7 @@ print('RESULT: actual no. of gene samples extracted:', extracted_gene_samples
# sanity check: length of gene samples
print('Performing sanity check:')
if extracted_gene_samples == expected_gene_samples:
print('PASS: expected & actual no. of gene samples match'
print('PASS: expected & actual no. of nssnp gene samples match'
, '\nNo. of gene samples:', len(meta_gene_all)
, '\n=========================================================')
else:
@ -484,13 +485,13 @@ print('No. of gene samples without', drug, 'testing:', gene_na)
# use it later to check number of complete samples from LF data
comp_gene_samples = len(meta_gene_all) - gene_na
print('comp gene samples tested for', drug, ':', comp_gene_samples)
print('Complete gene samples tested for', drug, ':', comp_gene_samples)
print('=================================================================')
# Comment: This is still dirty data since these
# are samples that have gene_match muts, but can have others as well
# are samples that have nsSNP muts, but can have others as well
# since the format for mutations is mut1; mut2, etc.
print('This is still dirty data: samples have ', gene_match, 'muts but may have others as well'
print('This is still dirty data: samples have ', nssnp_match, 'muts but may have others as well'
, '\nsince the format for mutations is mut1; mut2, etc.'
, '\n=============================================================')
@ -511,17 +512,18 @@ dr_WF0 = tidy_split(meta_gene_dr, col_to_split1, sep = ';')
# remove leading white space else these are counted as distinct mutations as well
dr_WF0[dr_muts_col] = dr_WF0[dr_muts_col].str.lstrip()
# extract only the samples/rows with gene_match
dr_gene_WF0 = dr_WF0.loc[dr_WF0[dr_muts_col].str.contains(gene_match)]
print('Lengths after tidy split and extracting', gene_match, 'muts:'
, '\nold length:' , len(meta_gene_dr)
, '\nlen after split:', len(dr_WF0)
, '\ndr_gene_WF0 length:', len(dr_gene_WF0)
, '\nexpected len:', dr_gene_count)
# extract only the samples/rows with nssnp_match
#dr_gene_WF0 = dr_WF0.loc[dr_WF0[dr_muts_col].str.contains(gene_match)]
dr_gene_WF0 = dr_WF0.loc[dr_WF0[dr_muts_col].str.contains(nssnp_match, regex = True, case = False)]
print('Lengths after tidy split and extracting', nssnp_match, 'muts:'
, '\nOld length:' , len(meta_gene_dr)
, '\nLength after split:', len(dr_WF0)
, '\nLength of nssnp df:', len(dr_gene_WF0)
, '\nExpected len:', dr_gene_count
, '\n=============================================================')
if len(dr_gene_WF0) == dr_gene_count:
print('PASS: length of dr_gene_WF0 match with expected length'
print('PASS: length matches expected length'
, '\n===============================================================')
else:
sys.exit('FAIL: lengths mismatch')
@ -547,8 +549,7 @@ if len(dr_gene_WF0) == c1.sum():
else:
sys.exit('FAIL: length mismatch!')
#!!! Important !!!
# Assign 'column name' on which split was performed as an extra column
# Important: Assign 'column name' on which split was performed as an extra column
# This is so you can identify if mutations are dr_type or other in the final df
dr_df = dr_gene_WF0.assign(mutation_info = dr_muts_col)
print('Dim of dr_df:', dr_df.shape
@ -573,17 +574,18 @@ other_WF1 = tidy_split(meta_gene_other, col_to_split2, sep = ';')
# remove the leading white spaces in the column
other_WF1[other_muts_col] = other_WF1[other_muts_col].str.strip()
# extract only the samples/rows with gene_match
other_gene_WF1 = other_WF1.loc[other_WF1[other_muts_col].str.contains(gene_match)]
# extract only the samples/rows with nssnp_match
#other_gene_WF1 = other_WF1.loc[other_WF1[other_muts_col].str.contains(gene_match)]
other_gene_WF1 = other_WF1.loc[other_WF1[other_muts_col].str.contains(nssnp_match, regex = True, case = False)]
print('Lengths after tidy split and extracting', gene_match, 'muts:',
'\nold length:' , len(meta_gene_other),
'\nlen after split:', len(other_WF1),
'\nother_gene_WF1 length:', len(other_gene_WF1),
'\nexpected len:', other_gene_count)
'\nOld length:' , len(meta_gene_other),
'\nLength after split:', len(other_WF1),
'\nLength of nssnp df:', len(other_gene_WF1),
'\nExpected len:', other_gene_count
, '\n=============================================================')
if len(other_gene_WF1) == other_gene_count:
print('PASS: length matches with expected length'
print('PASS: length matches expected length'
, '\n===============================================================')
else:
sys.exit('FAIL: lengths mismatch')
@ -607,8 +609,7 @@ if len(other_gene_WF1) == c2.sum():
else:
sys.exit('FAIL: Length mismatch')
#!!! Important !!!
# Assign 'column name' on which split was performed as an extra column
# Important: Assign 'column name' on which split was performed as an extra column
# This is so you can identify if mutations are dr_type or other in the final df
other_df = other_gene_WF1.assign(mutation_info = other_muts_col)
print('dim of other_df:', other_df.shape
@ -620,8 +621,7 @@ print('dim of other_df:', other_df.shape
#==========
# Concatentating the two dfs: equivalent of rbind in R
#==========
#!!! important !!!
# change column names to allow concat:
# Important: Change column names to allow concat:
# dr_muts.. & other_muts : 'mutation'
print('Now concatenating the two dfs by row'
, '\nFirst assigning a common colname: "mutation" to the col containing muts'
@ -638,9 +638,9 @@ other_df.columns
if len(dr_df.columns) == len(other_df.columns):
print('Checking dfs for concatening by rows:'
, '\ndr_df dim:', dr_df.shape
, '\nother_df dim:', other_df.shape
, '\nexpected nrows:', len(dr_df) + len(other_df)
, '\nDim of dr_df:', dr_df.shape
, '\nDim of other_df:', other_df.shape
, '\nExpected nrows:', len(dr_df) + len(other_df)
, '\n=============================================================')
else:
sys.exit('FAIL: No. of cols mismatch for concatenating')
@ -656,13 +656,15 @@ else:
print('Now appending the two dfs: Rbind')
gene_LF_comb = pd.concat([dr_df, other_df], ignore_index = True, axis = 0)
stop_muts = gene_LF_comb['mutation'].str.contains('\*').sum()
print('Finding stop mutations in concatenated df')
if stop_muts > 0:
stop_muts = gene_LF_comb['mutation'].str.contains('\*').sum()
if stop_muts == 0:
print('PASS: No stop mutations detected')
else:
print('stop mutations detected'
, '\nNo. of stop muts:', stop_muts, '\n'
, gene_LF_comb.groupby(['mutation_info'])['mutation'].apply(lambda x: x[x.str.contains('\*')].count())
, '\nNow removing them')
, '\nNow removing them')
gene_LF0_nssnp = gene_LF_comb[~gene_LF_comb['mutation'].str.contains('\*')]
print('snps only: by subtracting stop muts:', len(gene_LF0_nssnp))
@ -671,7 +673,7 @@ gene_LF0 = gene_LF_comb[gene_LF_comb['mutation'].str.contains(nssnp_match, case
print('snps only by direct regex:', len(gene_LF0))
if gene_LF0_nssnp.equals(gene_LF0):
print('PASS: regex for extracting nssnp worked correctly & stop mutations succeessfully removed'
print('PASS: regex for extracting nssnp worked correctly & stop mutations successfully removed'
, '\nUsing the regex extracted df')
else:
sys.exit('FAIL: posssibly regex or no of stop mutations'
@ -697,11 +699,11 @@ else:
###########
# This is hopefully clean data, but just double check
# Filter LF data so that you only have
# mutations corresponding to gene_match* (string match pattern)
# mutations corresponding to nssnp_match (case insensitive)
# this will be your list you run OR calcs
###########
print('Length of gene_LF0:', len(gene_LF0)
, '\nThis should be what we need. But just double checking and extracting nssnp for', gene_match
, '\nThis should be what we need. But just double checking and extracting nsSNP for', gene
, '\nfrom LF0 (concatenated data) using case insensitive regex match:', nssnp_match)
gene_LF1 = gene_LF0[gene_LF0['mutation'].str.contains(nssnp_match, regex = True, case = False)]
@ -722,12 +724,9 @@ print('Length of dfs pre and post processing...'
, '\ngene LF data (unique mutation in each row):', len(gene_LF1)
, '\n=============================================================')
if extracted_gene_samples > len(gene_LF1):
print('Stop mutations removed after concatentaing')
#%% sanity check for extraction
# FIXME: This ought to pass if nsnsp_match happens right at the beginning of creating
#expected_rows
# This ought to pass if nsnsp_match happens right at the beginning of creating 'expected_rows'
print('Verifying whether extraction process worked correctly...')
if len(gene_LF1) == expected_rows:
print('PASS: extraction process performed correctly'
@ -741,12 +740,11 @@ else:
, '\nGot:', len(gene_LF1)
, '\nDebug please'
, '\n=========================================================')
#%% FIXME FIXME FIXME FIXME
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#%%
print('Performing some more sanity checks...')
# From LF1:
# no. of unique muts: useful for OR counts
# From LF1: useful for OR counts
# no. of unique muts
distinct_muts = gene_LF1.mutation.value_counts()
print('Distinct genomic mutations:', len(distinct_muts))
@ -767,7 +765,8 @@ else:
, '\nExpected count:', len(distinct_muts)
, '\nActual count:', mut_grouped.sum()
, '\nMuts should be distinct within dr* and other* type'
, '\nInspecting...'
, '\nInspecting...possibly ambiguous muts'
, '\nNo. of possible ambiguous muts:', mut_grouped.sum() - len(distinct_muts)
, '\n=========================================================')
muts_split = list(gene_LF1.groupby('mutation_info'))
@ -776,15 +775,12 @@ other_muts = muts_split[1][1].mutation
print('splitting muts by mut_info:', muts_split)
print('no.of dr_muts samples:', len(dr_muts))
print('no. of other_muts samples', len(other_muts))
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# FIXME FIXME FIXME
#%%
# !!! IMPORTANT !!!!
# sanity check: There should not be any common muts
# i.e the same mutation cannot be classed as a drug AND 'others'
# IMPORTANT: The same mutation cannot be classed as a drug AND 'others'
if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0:
print('WARNING: Ambiguous muts detected in dr_ and other_ mutation category'
, '\n===============================================================')
, '\n===============================================================')
else:
print('PASS: NO ambiguous muts detected'
, '\nMuts are unique to dr_ and other_ mutation class'
@ -834,7 +830,6 @@ outfile_ambig_muts = outdir + '/' + out_filename_ambig_muts
print('Writing file: ambiguous muts'
, '\nFilename:', outfile_ambig_muts)
#common_muts = ['gene_matchVal180Phe','gene_matchGln10Pro'] # test
inspect = gene_LF1[gene_LF1['mutation'].isin(common_muts)]
inspect.to_csv(outfile_ambig_muts, index = False)
@ -869,8 +864,10 @@ ncol_aa_add = 2 # 2 aa prop add (wt & mut) in each mapping
# After importing, convert to mutation to lowercase for compatibility with dict
#===========
gene_LF1['mutation'] = gene_LF1.loc[:, 'mutation'].str.lower()
gene_regex = gene_match.lower()+'(\w{3})'
print('gene regex being used:', gene_regex)
print('wt regex being used:', wt_regex
, '\nmut regex being used:', mut_regex
, '\nposition regex being used:', pos_regex)
mylen0 = len(gene_LF1.columns)
#=======
@ -888,14 +885,16 @@ print('Adding', ncol_mutf_add, 'more cols:\n')
lookup_dict = dict()
for k, v in my_aa_dict.items():
lookup_dict[k] = v['one_letter_code']
# wt = gene_LF1['mutation'].str.extract('gene_p.(\w{3})').squeeze() # converts to a series that map works on
wt = gene_LF1['mutation'].str.extract(gene_regex).squeeze()
#wt = gene_LF1['mutation'].str.extract(gene_regex).squeeze()converts to a series that map works on
wt = gene_LF1['mutation'].str.extract(wt_regex).squeeze()
gene_LF1['wild_type'] = wt.map(lookup_dict)
mut = gene_LF1['mutation'].str.extract('\d+(\w{3})$').squeeze()
#mut = gene_LF1['mutation'].str.extract('\d+(\w{3})$').squeeze()
mut = gene_LF1['mutation'].str.extract(mut_regex).squeeze()
gene_LF1['mutant_type'] = mut.map(lookup_dict)
# extract position info from mutation column separetly using string match
gene_LF1['position'] = gene_LF1['mutation'].str.extract(r'(\d+)')
#gene_LF1['position'] = gene_LF1['mutation'].str.extract(r'(\d+)')
gene_LF1['position'] = gene_LF1['mutation'].str.extract(pos_regex)
mylen1 = len(gene_LF1.columns)
@ -939,10 +938,10 @@ lookup_dict = dict()
for k, v in my_aa_dict.items():
lookup_dict[k] = v['aa_prop_water']
#print(lookup_dict)
# wt = gene_LF1['mutation'].str.extract('gene_p.(\w{3})').squeeze() # converts to a series that map works on
wt = gene_LF1['mutation'].str.extract(gene_regex).squeeze()
wt = gene_LF1['mutation'].str.extract(wt_regex).squeeze()
gene_LF1['wt_prop_water'] = wt.map(lookup_dict)
mut = gene_LF1['mutation'].str.extract('\d+(\w{3})$').squeeze()
#mut = gene_LF1['mutation'].str.extract('\d+(\w{3})$').squeeze()
mut = gene_LF1['mutation'].str.extract(mut_regex).squeeze()
gene_LF1['mut_prop_water'] = mut.map(lookup_dict)
mylen2 = len(gene_LF1.columns)
@ -987,10 +986,10 @@ lookup_dict = dict()
for k, v in my_aa_dict.items():
lookup_dict[k] = v['aa_prop_polarity']
#print(lookup_dict)
# wt = gene_LF1['mutation'].str.extract('gene_p.(\w{3})').squeeze() # converts to a series that map works on
wt = gene_LF1['mutation'].str.extract(gene_regex).squeeze()
wt = gene_LF1['mutation'].str.extract(wt_regex).squeeze()
gene_LF1['wt_prop_polarity'] = wt.map(lookup_dict)
mut = gene_LF1['mutation'].str.extract(r'\d+(\w{3})$').squeeze()
#mut = gene_LF1['mutation'].str.extract(r'\d+(\w{3})$').squeeze()
mut = gene_LF1['mutation'].str.extract(mut_regex).squeeze()
gene_LF1['mut_prop_polarity'] = mut.map(lookup_dict)
mylen3 = len(gene_LF1.columns)
@ -1033,10 +1032,9 @@ lookup_dict = dict()
for k, v in my_aa_dict.items():
lookup_dict[k] = v['aa_calcprop']
#print(lookup_dict)
# wt = gene_LF1['mutation'].str.extract('gene_p.(\w{3})').squeeze() # converts to a series that map works on
wt = gene_LF1['mutation'].str.extract(gene_regex).squeeze()
wt = gene_LF1['mutation'].str.extract(wt_regex).squeeze()
gene_LF1['wt_calcprop'] = wt.map(lookup_dict)
mut = gene_LF1['mutation'].str.extract(r'\d+(\w{3})$').squeeze()
mut = gene_LF1['mutation'].str.extract(mut_regex).squeeze()
gene_LF1['mut_calcprop'] = mut.map(lookup_dict)
mylen4 = len(gene_LF1.columns)
@ -1068,50 +1066,6 @@ else:
# clear variables
del(k, v, wt, mut, lookup_dict)
#========
# iterate through the dict, create a lookup dict that i.e
# lookup_dict = {three_letter_code: aa_taylor}
# Do this for both wild_type and mutant as above.
# caution: taylor mapping will create a list within a column
#=========
#print('Adding', ncol_aa_add, 'more cols:\n')
#lookup_dict = dict()
#for k, v in my_aa_dict.items():
# lookup_dict[k] = v['aa_taylor']
#print(lookup_dict)
# wt = gene_LF1['mutation'].str.extract(gene_regex).squeeze()
# gene_LF1['wt_taylor'] = wt.map(lookup_dict)
# mut = gene_LF1['mutation'].str.extract(r'\d+(\w{3})$').squeeze()
# gene_LF1['mut_taylor'] = mut.map(lookup_dict)
#mylen5 = len(gene_LF1.columns)
# sanity checks
#print('checking if 3-letter wt&mut residue extraction worked correctly')
#if wt.isna().sum() & mut.isna().sum() == 0:
# print('PASS: 3-letter wt&mut residue extraction worked correctly:'
# , '\nNo NAs detected:'
# , '\nwild-type\n', wt
# , '\nmutant-type\n', mut
# , '\ndim of df:', gene_LF1.shape)
#else:
# print('FAIL: 3-letter wt&mut residue extraction failed'
# , '\nNo NAs detected:'
# , '\nwild-type\n', wt
# , '\nmutant-type\n', mut
# , '\ndim of df:', gene_LF1.shape)
#if mylen5 == mylen4 + ncol_aa_add:
# print('PASS: successfully added', ncol_aa_add, 'cols'
# , '\nold length:', mylen4
# , '\nnew len:', mylen5)
#else:
# print('FAIL: failed to add cols:'
# , '\nold length:', mylen4
# , '\nnew len:', mylen5)
# clear variables
#del(k, v, wt, mut, lookup_dict)
########
# combine the wild_type+poistion+mutant_type columns to generate
# mutationinformation (matches mCSM output field)
@ -1119,7 +1073,7 @@ del(k, v, wt, mut, lookup_dict)
#########
gene_LF1['mutationinformation'] = gene_LF1['wild_type'] + gene_LF1.position.map(str) + gene_LF1['mutant_type']
print('Created column: mutationinformation'
, '\n====================================================================='
, '\n=====================================================================\n'
, gene_LF1.mutationinformation.head(10))
#%% Write file: mCSM muts
@ -1142,7 +1096,7 @@ out_filename_mcsmsnps = gene.lower() + '_mcsm_snps.csv'
outfile_mcsmsnps = outdir + '/' + out_filename_mcsmsnps
print('Writing file: mCSM style muts'
, '\nFilename:', outfile_mcsmsnps
, '\nFile:', outfile_mcsmsnps
, '\nmutation format (SNP): {WT}<POS>{MUT}'
, '\nNo. of distinct muts:', len(snps_only)
, '\nNo. of distinct positions:', len(pos_only)
@ -1161,7 +1115,7 @@ del(out_filename_mcsmsnps)
out_filename_metadata = gene.lower() + '_metadata.csv'
outfile_metadata = outdir + '/' + out_filename_metadata
print('Writing file: LF formatted data'
, '\nFilename:', outfile_metadata
, '\nFile:', outfile_metadata
, '\n============================================================')
gene_LF1.to_csv(outfile_metadata, header = True, index = False)
@ -1202,7 +1156,7 @@ out_filename_msa = gene.lower() +'_all_muts_msa.csv'
outfile_msa = outdir + '/' + out_filename_msa
print('Writing file: mCSM style muts for msa',
'\nFilename:', outfile_msa,
'\nFile:', outfile_msa,
'\nmutation format (SNP): {WT}<POS>{MUT}',
'\nNo.of lines of msa:', len(all_muts_msa))
@ -1232,8 +1186,8 @@ out_filename_pos = gene.lower() + '_mutational_positons.csv'
outfile_pos = outdir + '/' + out_filename_pos
print('Writing file: mutational positions'
, '\nNo. of distinct positions:', len(pos_only_sorted)
, '\nFile:', outfile_pos
, '\nNo. of distinct positions:', len(pos_only_sorted)
, '\n=============================================================')
pos_only_sorted.to_csv(outfile_pos, header = True, index = False)