remove .Rhistory
This commit is contained in:
parent
ac34de9e79
commit
15daa6dfc1
1 changed files with 0 additions and 512 deletions
|
@ -1,512 +0,0 @@
|
||||||
max(my_df2$Dis_lig_Ang) #9.847
|
|
||||||
min(my_df2$Dis_lig_Ang) #3.047
|
|
||||||
# count no of unique positions
|
|
||||||
length(unique(my_df2$Position))#47
|
|
||||||
#count no of unique mutations
|
|
||||||
length(unique(my_df2$Mutationinformation)) #110
|
|
||||||
#clear variable to avoid confusion
|
|
||||||
rm(my_df)
|
|
||||||
#%%%%%%%%%%
|
|
||||||
# Reassign
|
|
||||||
#%%%%%%%%%%
|
|
||||||
my_df = my_df2
|
|
||||||
# Stacked Barplot with colours: Lig_outcome @ position coloured by
|
|
||||||
# stability scores. This is a barplot where each bar corresponds
|
|
||||||
# to a SNP and is coloured by its corresponding PredAff stability value.
|
|
||||||
# Normalised values (range between -1 and 1 ) to aid visualisation
|
|
||||||
# NOTE: since barplot plots discrete values, colour = score, so number of
|
|
||||||
# colours will be equal to the no. of unique normalised scores
|
|
||||||
# rather than a continuous scale
|
|
||||||
# will require generating the colour scale separately.
|
|
||||||
#============================
|
|
||||||
# sanity checks
|
|
||||||
upos = unique(my_df$Position)
|
|
||||||
str(my_df$Lig_outcome)
|
|
||||||
colnames(my_df)
|
|
||||||
#===========================
|
|
||||||
# Data preparation for plots
|
|
||||||
#===========================
|
|
||||||
#!!!!!!!!!!!!!!!!!
|
|
||||||
# REASSIGNMENT
|
|
||||||
df <- my_df
|
|
||||||
rm(my_df)
|
|
||||||
# sanity checks
|
|
||||||
# should be a factor
|
|
||||||
is.factor(df$Lig_outcome)
|
|
||||||
table(df$Lig_outcome)
|
|
||||||
# sanity checks
|
|
||||||
# should be a factor
|
|
||||||
is.factor(df$Lig_outcome); as.factor(df$Lig_outcome)
|
|
||||||
# sanity checks
|
|
||||||
# should be a factor
|
|
||||||
is.factor(df$Lig_outcome); as.factor(df$Lig_outcome)
|
|
||||||
#===========================
|
|
||||||
# Data preparation for plots
|
|
||||||
#===========================
|
|
||||||
#!!!!!!!!!!!!!!!!!
|
|
||||||
# REASSIGNMENT
|
|
||||||
df <- my_df
|
|
||||||
getwd()
|
|
||||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
|
||||||
getwd()
|
|
||||||
############################################################
|
|
||||||
# 1: Installing and loading required packages and functions
|
|
||||||
############################################################
|
|
||||||
source("../Header_TT.R")
|
|
||||||
source("../barplot_colour_function.R")
|
|
||||||
############################################################
|
|
||||||
# Output dir for plots
|
|
||||||
############################################################
|
|
||||||
out_dir = "~/git/Data/pyrazinamide/output/plots"
|
|
||||||
############################################################
|
|
||||||
# 2: call script the prepares the data with columns containing
|
|
||||||
# colours for axis labels
|
|
||||||
############################################################
|
|
||||||
source("subcols_axis.R")
|
|
||||||
# this should return
|
|
||||||
#mut_pos_cols: 130, 4
|
|
||||||
#my_df: 335, 39
|
|
||||||
# clear excess variable
|
|
||||||
# "mut_pos_cols" is just for inspection in case you need to cross check
|
|
||||||
# position numbers and colours
|
|
||||||
# open file from deskptop ("sample_axis_cols") for cross checking
|
|
||||||
table(mut_pos_cols$lab_bg)
|
|
||||||
sum( table(mut_pos_cols$lab_bg) ) == nrow(mut_pos_cols) # should be True
|
|
||||||
table(mut_pos_cols$lab_bg2)
|
|
||||||
sum( table(mut_pos_cols$lab_bg2) ) == nrow(mut_pos_cols) # should be True
|
|
||||||
table(mut_pos_cols$lab_fg)
|
|
||||||
sum( table(mut_pos_cols$lab_fg) ) == nrow(mut_pos_cols) # should be True
|
|
||||||
# very important!
|
|
||||||
my_axis_colours = mut_pos_cols$lab_fg
|
|
||||||
# now clear mut_pos_cols
|
|
||||||
rm(mut_pos_cols)
|
|
||||||
########################### !!! only for mcsm_lig
|
|
||||||
# 4: Filter/subset data
|
|
||||||
# Lig plots < 10Ang
|
|
||||||
# Filter the lig plots for Dis_to_lig < 10Ang
|
|
||||||
###########################
|
|
||||||
# check range of distances
|
|
||||||
max(my_df$Dis_lig_Ang)
|
|
||||||
min(my_df$Dis_lig_Ang)
|
|
||||||
# subset data to have only values less than 10 Ang
|
|
||||||
my_df2 = subset(my_df, my_df$Dis_lig_Ang < 10)
|
|
||||||
# sanity checks
|
|
||||||
table(my_df2$Dis_lig_Ang<10)
|
|
||||||
table(my_df2$Dis_lig_Ang>10)
|
|
||||||
max(my_df2$Dis_lig_Ang)
|
|
||||||
min(my_df2$Dis_lig_Ang)
|
|
||||||
# count no of unique positions
|
|
||||||
length(unique(my_df2$Position))
|
|
||||||
#count no of unique mutations
|
|
||||||
length(unique(my_df2$Mutationinformation))
|
|
||||||
# clear variable to avoid confusion
|
|
||||||
rm(my_df)
|
|
||||||
#%%%%%%%%%%
|
|
||||||
# Reassign to keep code below consistent
|
|
||||||
#%%%%%%%%%%
|
|
||||||
my_df = my_df2
|
|
||||||
###########################
|
|
||||||
# 2: Plot: Lig scores
|
|
||||||
###########################
|
|
||||||
#==========================
|
|
||||||
# Plot 2: Barplot with scores (unordered)
|
|
||||||
# corresponds to Lig_outcome
|
|
||||||
# Stacked Barplot with colours: Lig_outcome @ position coloured by
|
|
||||||
# stability scores. This is a barplot where each bar corresponds
|
|
||||||
# to a SNP and is coloured by its corresponding PredAff stability value.
|
|
||||||
# Normalised values (range between -1 and 1 ) to aid visualisation
|
|
||||||
# NOTE: since barplot plots discrete values, colour = score, so number of
|
|
||||||
# colours will be equal to the no. of unique normalised scores
|
|
||||||
# rather than a continuous scale
|
|
||||||
# will require generating the colour scale separately.
|
|
||||||
#============================
|
|
||||||
# sanity checks
|
|
||||||
upos = unique(my_df$Position)
|
|
||||||
str(my_df$Lig_outcome)
|
|
||||||
colnames(my_df)
|
|
||||||
#===========================
|
|
||||||
# Data preparation for plots
|
|
||||||
#===========================
|
|
||||||
#!!!!!!!!!!!!!!!!!
|
|
||||||
# REASSIGNMENT
|
|
||||||
df <- my_df
|
|
||||||
rm(my_df)
|
|
||||||
# sanity checks
|
|
||||||
# should be a factor
|
|
||||||
is.factor(df$Lig_outcome); as.factor(df$Lig_outcome)
|
|
||||||
df$Lig_outcome = as.factor(df$Lig_outcome)
|
|
||||||
is.factor(df$Lig_outcome);
|
|
||||||
table(df$Lig_outcome)
|
|
||||||
# should be -1 and 1
|
|
||||||
min(df$ratioPredAff)
|
|
||||||
max(df$ratioPredAff)
|
|
||||||
# sanity checks
|
|
||||||
# very important!!!!
|
|
||||||
tapply(df$ratioPredAff, df$Lig_outcome, min)
|
|
||||||
tapply(df$ratioPredAff, df$Lig_outcome, max)
|
|
||||||
# sanity checks
|
|
||||||
# very important!!!!
|
|
||||||
tapply(df$ratioPredAff, df$Lig_outcome, min)
|
|
||||||
tapply(df$ratioPredAff, df$Lig_outcome, max)
|
|
||||||
# check unique values in normalised data
|
|
||||||
u = unique(df$ratioPredAff)
|
|
||||||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
# Run this section if rounding is to be used
|
|
||||||
# specify number for rounding
|
|
||||||
n = 3
|
|
||||||
df$ratioPredAffR = round(df$ratioPredAff, n)
|
|
||||||
u = unique(df$ratioPredAffR)
|
|
||||||
# create an extra column called group which contains the "gp name and score"
|
|
||||||
# so colours can be generated for each unique values in this column
|
|
||||||
my_grp = df$ratioPredAffR
|
|
||||||
df$group <- paste0(df$Lig_outcome, "_", my_grp, sep = "")
|
|
||||||
# Call the function to create the palette based on the group defined above
|
|
||||||
colours <- ColourPalleteMulti(df, "Lig_outcome", "my_grp")
|
|
||||||
my_title = "Protein stability (PredAff)"
|
|
||||||
library(ggplot2)
|
|
||||||
# axis label size
|
|
||||||
my_xaxls = 13
|
|
||||||
my_title = "Ligand Affinity"
|
|
||||||
# axis label size
|
|
||||||
my_xaxls = 13
|
|
||||||
my_yaxls = 15
|
|
||||||
# axes text size
|
|
||||||
my_xaxts = 15
|
|
||||||
my_yaxts = 15
|
|
||||||
# no ordering of x-axis according to frequency
|
|
||||||
g = ggplot(df, aes(factor(Position, ordered = T)))
|
|
||||||
g +
|
|
||||||
geom_bar(aes(fill = group), colour = "grey") +
|
|
||||||
scale_fill_manual( values = colours
|
|
||||||
, guide = 'none') +
|
|
||||||
theme( axis.text.x = element_text(size = my_xaxls
|
|
||||||
, angle = 90
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0.4)
|
|
||||||
, axis.text.y = element_text(size = my_yaxls
|
|
||||||
, angle = 0
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0)
|
|
||||||
, axis.title.x = element_text(size = my_xaxts)
|
|
||||||
, axis.title.y = element_text(size = my_yaxts ) ) +
|
|
||||||
labs(title = my_title
|
|
||||||
, x = "Position"
|
|
||||||
, y = "Frequency")
|
|
||||||
class(df$lab_bg)
|
|
||||||
# make this a named vector
|
|
||||||
# define cartesian coord
|
|
||||||
my_xlim = length(unique(df$Position)); my_xlim
|
|
||||||
# axis label size
|
|
||||||
my_xals = 15
|
|
||||||
my_yals = 15
|
|
||||||
# axes text size
|
|
||||||
my_xats = 15
|
|
||||||
my_yats = 18
|
|
||||||
# using geom_tile
|
|
||||||
g = ggplot(df, aes(factor(Position, ordered = T)))
|
|
||||||
g +
|
|
||||||
coord_cartesian(xlim = c(1, my_xlim)
|
|
||||||
, ylim = c(0, 6)
|
|
||||||
, clip = "off") +
|
|
||||||
geom_bar(aes(fill = group), colour = "grey") +
|
|
||||||
scale_fill_manual( values = colours
|
|
||||||
, guide = 'none') +
|
|
||||||
geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
|
|
||||||
, fill = df$lab_bg) +
|
|
||||||
geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
|
|
||||||
, fill = df$lab_bg2) +
|
|
||||||
# Here it's important to specify that your axis goes from 1 to max number of levels
|
|
||||||
theme( axis.text.x = element_text(size = my_xats
|
|
||||||
, angle = 90
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0.4
|
|
||||||
, colour = my_axis_colours)
|
|
||||||
, axis.text.y = element_text(size = my_yats
|
|
||||||
, angle = 0
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0)
|
|
||||||
, axis.title.x = element_text(size = my_xals)
|
|
||||||
, axis.title.y = element_text(size = my_yals )
|
|
||||||
, axis.ticks.x = element_blank()
|
|
||||||
) +
|
|
||||||
labs(title = my_title
|
|
||||||
, x = "Position"
|
|
||||||
, y = "Frequency")
|
|
||||||
#========================
|
|
||||||
# output plot as svg/png
|
|
||||||
#========================
|
|
||||||
class(df$lab_bg)
|
|
||||||
# make this a named vector
|
|
||||||
# define cartesian coord
|
|
||||||
my_xlim = length(unique(df$Position)); my_xlim
|
|
||||||
# axis label size
|
|
||||||
my_xals = 18
|
|
||||||
my_yals = 18
|
|
||||||
# axes text size
|
|
||||||
my_xats = 14
|
|
||||||
my_yats = 18
|
|
||||||
# set output dir for plots
|
|
||||||
#getwd()
|
|
||||||
#setwd("~/git/Data/pyrazinamide/output/plots")
|
|
||||||
#getwd()
|
|
||||||
getwd()
|
|
||||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
|
||||||
getwd()
|
|
||||||
############################################################
|
|
||||||
# 1: Installing and loading required packages and functions
|
|
||||||
############################################################
|
|
||||||
source("../Header_TT.R")
|
|
||||||
source("../barplot_colour_function.R")
|
|
||||||
############################################################
|
|
||||||
# Output dir for plots
|
|
||||||
############################################################
|
|
||||||
out_dir = "~/git/Data/pyrazinamide/output/plots"
|
|
||||||
############################################################
|
|
||||||
# 2: call script the prepares the data with columns containing
|
|
||||||
# colours for axis labels
|
|
||||||
############################################################
|
|
||||||
source("subcols_axis.R")
|
|
||||||
# this should return
|
|
||||||
#mut_pos_cols: 130, 4
|
|
||||||
#my_df: 335, 39
|
|
||||||
# clear excess variable
|
|
||||||
# "mut_pos_cols" is just for inspection in case you need to cross check
|
|
||||||
# position numbers and colours
|
|
||||||
# open file from deskptop ("sample_axis_cols") for cross checking
|
|
||||||
table(mut_pos_cols$lab_bg)
|
|
||||||
sum( table(mut_pos_cols$lab_bg) ) == nrow(mut_pos_cols) # should be True
|
|
||||||
table(mut_pos_cols$lab_bg2)
|
|
||||||
sum( table(mut_pos_cols$lab_bg2) ) == nrow(mut_pos_cols) # should be True
|
|
||||||
table(mut_pos_cols$lab_fg)
|
|
||||||
sum( table(mut_pos_cols$lab_fg) ) == nrow(mut_pos_cols) # should be True
|
|
||||||
# very important!
|
|
||||||
my_axis_colours = mut_pos_cols$lab_fg
|
|
||||||
# now clear mut_pos_cols
|
|
||||||
rm(mut_pos_cols)
|
|
||||||
########################### !!! only for mcsm_lig
|
|
||||||
# 4: Filter/subset data
|
|
||||||
# Lig plots < 10Ang
|
|
||||||
# Filter the lig plots for Dis_to_lig < 10Ang
|
|
||||||
###########################
|
|
||||||
# check range of distances
|
|
||||||
max(my_df$Dis_lig_Ang)
|
|
||||||
min(my_df$Dis_lig_Ang)
|
|
||||||
# subset data to have only values less than 10 Ang
|
|
||||||
my_df2 = subset(my_df, my_df$Dis_lig_Ang < 10)
|
|
||||||
# sanity checks
|
|
||||||
table(my_df2$Dis_lig_Ang<10)
|
|
||||||
table(my_df2$Dis_lig_Ang>10)
|
|
||||||
max(my_df2$Dis_lig_Ang)
|
|
||||||
min(my_df2$Dis_lig_Ang)
|
|
||||||
# count no of unique positions
|
|
||||||
length(unique(my_df2$Position))
|
|
||||||
#count no of unique mutations
|
|
||||||
length(unique(my_df2$Mutationinformation))
|
|
||||||
# clear variable to avoid confusion
|
|
||||||
rm(my_df)
|
|
||||||
#%%%%%%%%%%
|
|
||||||
# Reassign to keep code below consistent
|
|
||||||
#%%%%%%%%%%
|
|
||||||
my_df = my_df2
|
|
||||||
###########################
|
|
||||||
# 2: Plot: Lig scores
|
|
||||||
###########################
|
|
||||||
#==========================
|
|
||||||
# Plot 2: Barplot with scores (unordered)
|
|
||||||
# corresponds to Lig_outcome
|
|
||||||
# Stacked Barplot with colours: Lig_outcome @ position coloured by
|
|
||||||
# stability scores. This is a barplot where each bar corresponds
|
|
||||||
# to a SNP and is coloured by its corresponding PredAff stability value.
|
|
||||||
# Normalised values (range between -1 and 1 ) to aid visualisation
|
|
||||||
# NOTE: since barplot plots discrete values, colour = score, so number of
|
|
||||||
# colours will be equal to the no. of unique normalised scores
|
|
||||||
# rather than a continuous scale
|
|
||||||
# will require generating the colour scale separately.
|
|
||||||
#============================
|
|
||||||
# sanity checks
|
|
||||||
upos = unique(my_df$Position)
|
|
||||||
str(my_df$Lig_outcome)
|
|
||||||
colnames(my_df)
|
|
||||||
#===========================
|
|
||||||
# Data preparation for plots
|
|
||||||
#===========================
|
|
||||||
#!!!!!!!!!!!!!!!!!
|
|
||||||
# REASSIGNMENT
|
|
||||||
df <- my_df
|
|
||||||
#!!!!!!!!!!!!!!!!!
|
|
||||||
rm(my_df)
|
|
||||||
# sanity checks
|
|
||||||
# should be a factor
|
|
||||||
is.factor(df$Lig_outcome);
|
|
||||||
#FALSE
|
|
||||||
df$Lig_outcome = as.factor(df$Lig_outcome)
|
|
||||||
is.factor(df$Lig_outcome);
|
|
||||||
#TRUE
|
|
||||||
table(df$Lig_outcome)
|
|
||||||
# check the range
|
|
||||||
min(df$ratioPredAff)
|
|
||||||
max(df$ratioPredAff)
|
|
||||||
# sanity checks
|
|
||||||
# very important!!!!
|
|
||||||
tapply(df$ratioPredAff, df$Lig_outcome, min)
|
|
||||||
tapply(df$ratioPredAff, df$Lig_outcome, max)
|
|
||||||
# My colour FUNCTION: based on group and subgroup
|
|
||||||
# in my case;
|
|
||||||
# df = df
|
|
||||||
# group = Lig_outcome
|
|
||||||
# subgroup = normalised score i.e ratioPredAff
|
|
||||||
# Prepare data: round off ratioPredAff scores
|
|
||||||
# round off to 3 significant digits:
|
|
||||||
# 323 if no rounding is performed: used to generate the original graph
|
|
||||||
# 287 if rounded to 3 places
|
|
||||||
# FIXME: check if reducing precicion creates any ML prob
|
|
||||||
# check unique values in normalised data
|
|
||||||
u = unique(df$ratioPredAff)
|
|
||||||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
# Run this section if rounding is to be used
|
|
||||||
# specify number for rounding
|
|
||||||
n = 3
|
|
||||||
df$ratioPredAffR = round(df$ratioPredAff, n)
|
|
||||||
u = unique(df$ratioPredAffR)
|
|
||||||
# create an extra column called group which contains the "gp name and score"
|
|
||||||
# so colours can be generated for each unique values in this column
|
|
||||||
my_grp = df$ratioPredAffR
|
|
||||||
df$group <- paste0(df$Lig_outcome, "_", my_grp, sep = "")
|
|
||||||
# ELSE
|
|
||||||
# uncomment the below if rounding is not required
|
|
||||||
#my_grp = df$ratioPredAff
|
|
||||||
#df$group <- paste0(df$Lig_outcome, "_", my_grp, sep = "")
|
|
||||||
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
#******************
|
|
||||||
# generate plot
|
|
||||||
#******************
|
|
||||||
# Call the function to create the palette based on the group defined above
|
|
||||||
colours <- ColourPalleteMulti(df, "Lig_outcome", "my_grp")
|
|
||||||
my_title = "Ligand Affinity"
|
|
||||||
library(ggplot2)
|
|
||||||
# axis label size
|
|
||||||
my_xaxls = 13
|
|
||||||
my_yaxls = 15
|
|
||||||
# axes text size
|
|
||||||
my_xaxts = 15
|
|
||||||
my_yaxts = 15
|
|
||||||
# no ordering of x-axis according to frequency
|
|
||||||
g = ggplot(df, aes(factor(Position, ordered = T)))
|
|
||||||
g +
|
|
||||||
geom_bar(aes(fill = group), colour = "grey") +
|
|
||||||
scale_fill_manual( values = colours
|
|
||||||
, guide = 'none') +
|
|
||||||
theme( axis.text.x = element_text(size = my_xaxls
|
|
||||||
, angle = 90
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0.4)
|
|
||||||
, axis.text.y = element_text(size = my_yaxls
|
|
||||||
, angle = 0
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0)
|
|
||||||
, axis.title.x = element_text(size = my_xaxts)
|
|
||||||
, axis.title.y = element_text(size = my_yaxts ) ) +
|
|
||||||
labs(title = my_title
|
|
||||||
, x = "Position"
|
|
||||||
, y = "Frequency")
|
|
||||||
#========================
|
|
||||||
# plot with axis colours
|
|
||||||
#========================
|
|
||||||
class(df$lab_bg)
|
|
||||||
# make this a named vector
|
|
||||||
# define cartesian coord
|
|
||||||
my_xlim = length(unique(df$Position)); my_xlim
|
|
||||||
# axis label size
|
|
||||||
my_xals = 15
|
|
||||||
my_yals = 15
|
|
||||||
# axes text size
|
|
||||||
my_xats = 15
|
|
||||||
my_yats = 18
|
|
||||||
# using geom_tile
|
|
||||||
g = ggplot(df, aes(factor(Position, ordered = T)))
|
|
||||||
g +
|
|
||||||
coord_cartesian(xlim = c(1, my_xlim)
|
|
||||||
, ylim = c(0, 6)
|
|
||||||
, clip = "off") +
|
|
||||||
geom_bar(aes(fill = group), colour = "grey") +
|
|
||||||
scale_fill_manual( values = colours
|
|
||||||
, guide = 'none') +
|
|
||||||
geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
|
|
||||||
, fill = df$lab_bg) +
|
|
||||||
geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
|
|
||||||
, fill = df$lab_bg2) +
|
|
||||||
# Here it's important to specify that your axis goes from 1 to max number of levels
|
|
||||||
theme( axis.text.x = element_text(size = my_xats
|
|
||||||
, angle = 90
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0.4
|
|
||||||
, colour = my_axis_colours)
|
|
||||||
, axis.text.y = element_text(size = my_yats
|
|
||||||
, angle = 0
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0)
|
|
||||||
, axis.title.x = element_text(size = my_xals)
|
|
||||||
, axis.title.y = element_text(size = my_yals )
|
|
||||||
, axis.ticks.x = element_blank()
|
|
||||||
) +
|
|
||||||
labs(title = my_title
|
|
||||||
, x = "Position"
|
|
||||||
, y = "Frequency")
|
|
||||||
#========================
|
|
||||||
# output plot as svg/png
|
|
||||||
#========================
|
|
||||||
class(df$lab_bg)
|
|
||||||
# make this a named vector
|
|
||||||
# define cartesian coord
|
|
||||||
my_xlim = length(unique(df$Position)); my_xlim
|
|
||||||
# axis label size
|
|
||||||
my_xals = 18
|
|
||||||
my_yals = 18
|
|
||||||
# axes text size
|
|
||||||
my_xats = 14
|
|
||||||
my_yats = 18
|
|
||||||
# set output dir for plots
|
|
||||||
#getwd()
|
|
||||||
#setwd("~/git/Data/pyrazinamide/output/plots")
|
|
||||||
#getwd()
|
|
||||||
plot_name = "barplot_LIG_acoloured.svg"
|
|
||||||
my_plot_name = paste0(out_dir, "/", plot_name); my_plot_name
|
|
||||||
svg(my_plot_name, width = 26, height = 4)
|
|
||||||
g = ggplot(df, aes(factor(Position, ordered = T)))
|
|
||||||
outFile = g +
|
|
||||||
coord_cartesian(xlim = c(1, my_xlim)
|
|
||||||
, ylim = c(0, 6)
|
|
||||||
, clip = "off"
|
|
||||||
) +
|
|
||||||
geom_bar(aes(fill = group), colour = "grey") +
|
|
||||||
scale_fill_manual( values = colours
|
|
||||||
, guide = 'none') +
|
|
||||||
# geom_tile(aes(,-0.6, width = 0.9, height = 0.7)
|
|
||||||
# , fill = df$lab_bg) +
|
|
||||||
# geom_tile(aes(,-1, width = 0.9, height = 0.3)
|
|
||||||
# , fill = df$lab_bg2) +
|
|
||||||
geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
|
|
||||||
, fill = df$lab_bg) +
|
|
||||||
geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
|
|
||||||
, fill = df$lab_bg2) +
|
|
||||||
# Here it's important to specify that your axis goes from 1 to max number of levels
|
|
||||||
theme( axis.text.x = element_text(size = my_xats
|
|
||||||
, angle = 90
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0.4
|
|
||||||
, colour = my_axis_colours)
|
|
||||||
, axis.text.y = element_text(size = my_yats
|
|
||||||
, angle = 0
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0)
|
|
||||||
, axis.title.x = element_text(size = my_xals)
|
|
||||||
, axis.title.y = element_text(size = my_yals )
|
|
||||||
, axis.ticks.x = element_blank()
|
|
||||||
) +
|
|
||||||
labs(title = ""
|
|
||||||
, x = "Position"
|
|
||||||
, y = "Frequency")
|
|
||||||
print(outFile)
|
|
||||||
dev.off()
|
|
||||||
# for sanity and good practice
|
|
||||||
#rm(df)
|
|
Loading…
Add table
Add a link
Reference in a new issue