added option to add confusion matrix and target numbers in the mult function
This commit is contained in:
parent
905327bf4e
commit
135efcee41
3 changed files with 144 additions and 140 deletions
|
@ -137,95 +137,76 @@ def MultModelsCl(input_df, target, skf_cv
|
|||
col_transform = ColumnTransformer(transformers = t
|
||||
, remainder='passthrough')
|
||||
|
||||
# Specify multiple Classification models
|
||||
lr = LogisticRegression(**rs)
|
||||
lrcv = LogisticRegressionCV(**rs)
|
||||
gnb = GaussianNB()
|
||||
nb = BernoulliNB()
|
||||
knn = KNeighborsClassifier()
|
||||
svc = SVC(**rs)
|
||||
mlp = MLPClassifier(max_iter = 500, **rs)
|
||||
dt = DecisionTreeClassifier(**rs)
|
||||
ets = ExtraTreesClassifier(**rs)
|
||||
et = ExtraTreeClassifier(**rs)
|
||||
rf = RandomForestClassifier(**rs, n_estimators = 1000 )
|
||||
rf2 = RandomForestClassifier(
|
||||
min_samples_leaf = 5
|
||||
, n_estimators = 1000
|
||||
, bootstrap = True
|
||||
, oob_score = True
|
||||
, **njobs
|
||||
, **rs
|
||||
, max_features = 'auto')
|
||||
xgb = XGBClassifier(**rs, verbosity = 0, use_label_encoder =False)
|
||||
|
||||
lda = LinearDiscriminantAnalysis()
|
||||
|
||||
mnb = MultinomialNB()
|
||||
|
||||
pa = PassiveAggressiveClassifier(**rs, **njobs)
|
||||
|
||||
sgd = SGDClassifier(**rs, **njobs)
|
||||
|
||||
abc = AdaBoostClassifier(**rs)
|
||||
bc = BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True)
|
||||
gpc = GaussianProcessClassifier(**rs)
|
||||
gbc = GradientBoostingClassifier(**rs)
|
||||
qda = QuadraticDiscriminantAnalysis()
|
||||
rc = RidgeClassifier(**rs)
|
||||
rccv = RidgeClassifierCV(cv = 10)
|
||||
|
||||
models = [('Logistic Regression' , lr)
|
||||
, ('Logistic RegressionCV' , lrcv)
|
||||
, ('Gaussian NB' , gnb)
|
||||
, ('Naive Bayes' , nb)
|
||||
, ('K-Nearest Neighbors' , knn)
|
||||
, ('SVC' , svc)
|
||||
, ('MLP' , mlp)
|
||||
, ('Decision Tree' , dt)
|
||||
, ('Extra Trees' , ets)
|
||||
, ('Extra Tree' , et)
|
||||
, ('Random Forest' , rf)
|
||||
, ('Random Forest2' , rf2)
|
||||
, ('XGBoost' , xgb)
|
||||
, ('LDA' , lda)
|
||||
, ('Multinomial' , mnb)
|
||||
, ('Passive Aggresive' , pa)
|
||||
, ('Stochastic GDescent' , sgd)
|
||||
, ('AdaBoost Classifier' , abc)
|
||||
, ('Bagging Classifier' , bc)
|
||||
, ('Gaussian Process' , gpc)
|
||||
, ('Gradient Boosting' , gbc)
|
||||
, ('QDA' , qda)
|
||||
, ('Ridge Classifier' , rc)
|
||||
, ('Ridge ClassifierCV' , rccv)
|
||||
# Specify multiple Classification models
|
||||
models = [('Logistic Regression' , LogisticRegression(**rs) )
|
||||
, ('Logistic RegressionCV' , LogisticRegressionCV(**rs) )
|
||||
, ('Gaussian NB' , GaussianNB() )
|
||||
, ('Naive Bayes' , BernoulliNB() )
|
||||
, ('K-Nearest Neighbors' , KNeighborsClassifier() )
|
||||
, ('SVC' , SVC(**rs) )
|
||||
, ('MLP' , MLPClassifier(max_iter = 500, **rs) )
|
||||
, ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
||||
, ('Extra Trees' , ExtraTreesClassifier(**rs) )
|
||||
, ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
||||
, ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000 ) )
|
||||
, ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5
|
||||
, n_estimators = 1000
|
||||
, bootstrap = True
|
||||
, oob_score = True
|
||||
, **njobs
|
||||
, **rs
|
||||
, max_features = 'auto') )
|
||||
, ('XGBoost' , XGBClassifier(**rs, verbosity = 0, use_label_encoder =False) )
|
||||
, ('LDA' , LinearDiscriminantAnalysis() )
|
||||
, ('Multinomial' , MultinomialNB() )
|
||||
, ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
|
||||
, ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
|
||||
, ('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
|
||||
, ('Bagging Classifier' , BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True) )
|
||||
, ('Gaussian Process' , GaussianProcessClassifier(**rs) )
|
||||
, ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
|
||||
, ('QDA' , QuadraticDiscriminantAnalysis() )
|
||||
, ('Ridge Classifier' , RidgeClassifier(**rs) )
|
||||
, ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 10) )
|
||||
]
|
||||
|
||||
mm_skf_scoresD = {}
|
||||
|
||||
for model_name, model_fn in models:
|
||||
print('\nModel_name:', model_name
|
||||
, '\nModel func:' , model_fn
|
||||
, '\nList of models:', models)
|
||||
|
||||
print('\n==============================================================\n'
|
||||
, '\nRunning several classification models (n):', len(models)
|
||||
,'\nList of models:')
|
||||
for m in models:
|
||||
print(m)
|
||||
print('\n================================================================\n')
|
||||
|
||||
index = 1
|
||||
for model_name, model_fn in models:
|
||||
print('\nRunning classifier:', index
|
||||
, '\nModel_name:' , model_name
|
||||
, '\nModel func:' , model_fn)
|
||||
index = index+1
|
||||
|
||||
model_pipeline = Pipeline([
|
||||
('prep' , col_transform)
|
||||
, ('model' , model_fn)])
|
||||
|
||||
print('Running model pipeline:', model_pipeline)
|
||||
skf_cv_mod = cross_validate(model_pipeline
|
||||
print('\nRunning model pipeline:', model_pipeline)
|
||||
skf_cv_modD = cross_validate(model_pipeline
|
||||
, input_df
|
||||
, target
|
||||
, cv = skf_cv
|
||||
, scoring = scoring_fn
|
||||
, return_train_score = True)
|
||||
, return_train_score = True)
|
||||
|
||||
#==============================
|
||||
# Extract mean values for CV
|
||||
#==============================
|
||||
mm_skf_scoresD[model_name] = {}
|
||||
for key, value in skf_cv_mod.items():
|
||||
|
||||
for key, value in skf_cv_modD.items():
|
||||
print('\nkey:', key, '\nvalue:', value)
|
||||
print('\nmean value:', mean(value))
|
||||
mm_skf_scoresD[model_name][key] = round(mean(value),2)
|
||||
#pp.pprint(mm_skf_scoresD)
|
||||
#cvtrain_mcc = mm_skf_scoresD[model_name]['test_mcc']
|
||||
|
||||
#return(mm_skf_scoresD)
|
||||
#%%
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue