changed ml output dirs and ready to run fs
This commit is contained in:
parent
57348f1874
commit
11af00f1db
5 changed files with 67 additions and 152 deletions
|
@ -80,6 +80,8 @@ homedir = os.path.expanduser("~")
|
|||
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
||||
sys.path
|
||||
###############################################################################
|
||||
outdir = homedir + '/git/LSHTM_ML/output/combined/
|
||||
|
||||
#====================
|
||||
# Import ML functions
|
||||
#====================
|
||||
|
@ -92,6 +94,9 @@ skf_cv = StratifiedKFold(n_splits = 10 , shuffle = True, random_state = 42)
|
|||
|
||||
#logo = LeaveOneGroupOut()
|
||||
|
||||
########################################################################
|
||||
# COMPLETE data: No tts_split
|
||||
########################################################################
|
||||
#%%
|
||||
def CMLogoSkf(combined_df
|
||||
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
||||
|
@ -125,7 +130,8 @@ def CMLogoSkf(combined_df
|
|||
|
||||
tts_split_type = "logo_skf_BT_" + bts_gene
|
||||
|
||||
outFile = "/home/tanu/git/Data/ml_combined/" + str(n_tr_genes+1) + "genes_" + tts_split_type + ".csv"
|
||||
outFile = outdir + str(n_tr_genes+1) + "genes_" + tts_split_type + ".csv"
|
||||
|
||||
print(outFile)
|
||||
|
||||
#-------
|
||||
|
|
|
@ -15,19 +15,19 @@ homedir = os.path.expanduser("~")
|
|||
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
||||
sys.path
|
||||
###############################################################################
|
||||
outdir = homedir + '/git/LSHTM_ML/output/combined/
|
||||
|
||||
#====================
|
||||
# Import ML functions
|
||||
#====================
|
||||
from MultClfs import *
|
||||
#from MultClfs import *
|
||||
from MultClfs_logo_skf import *
|
||||
from GetMLData import *
|
||||
from SplitTTS import *
|
||||
|
||||
# param dict for getmldata()
|
||||
combined_model_paramD = {'data_combined_model' : False
|
||||
, 'use_or' : False
|
||||
, 'omit_all_genomic_features': False
|
||||
, 'write_maskfile' : False
|
||||
, 'write_outfile' : False }
|
||||
# Input data
|
||||
from ml_data_combined import *
|
||||
|
||||
###############################################################################
|
||||
#ml_genes = ["pncA", "embB", "katG", "rpoB", "gid"]
|
||||
|
||||
|
@ -54,7 +54,7 @@ for gene, drug in ml_gene_drugD.items():
|
|||
|
||||
for split_type in split_types:
|
||||
for data_type in split_data_types:
|
||||
out_filename = (gene.lower()+'_'+split_type+'_'+data_type+'.csv')
|
||||
out_filename = outdir + gene.lower()+ '_' + split_type + '_' + data_type + '.csv'
|
||||
tempD=split_tts(gene_dataD[gene_low]
|
||||
, data_type = data_type
|
||||
, split_type = split_type
|
||||
|
@ -88,14 +88,8 @@ for gene, drug in ml_gene_drugD.items():
|
|||
|
||||
mmDD = {}
|
||||
for k, v in paramD.items():
|
||||
scoresD = MultModelsCl(**paramD[k]
|
||||
, tts_split_type = split_type
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_df = tempD['X_bts']
|
||||
, blind_test_target = tempD['y_bts']
|
||||
, add_cm = True
|
||||
, add_yn = True
|
||||
, return_formatted_output = True)
|
||||
scoresD = MultModelsCl_logo_skf(**paramD[k]
|
||||
XXXXXXXXXXXXXXXXXXXXXXX
|
||||
mmDD[k] = scoresD
|
||||
|
||||
# Extracting the dfs from within the dict and concatenating to output as one df
|
||||
|
|
|
@ -15,6 +15,8 @@ homedir = os.path.expanduser("~")
|
|||
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
||||
sys.path
|
||||
###############################################################################
|
||||
outdir = homedir + '/git/LSHTM_ML/output/genes/'
|
||||
|
||||
#====================
|
||||
# Import ML functions
|
||||
#====================
|
||||
|
@ -54,7 +56,9 @@ for gene, drug in ml_gene_drugD.items():
|
|||
|
||||
for split_type in split_types:
|
||||
for data_type in split_data_types:
|
||||
out_filename = (gene.lower()+'_'+split_type+'_'+data_type+'.csv')
|
||||
|
||||
out_filename = outdir + gene.lower() + '_' + split_type + '_' + data_type + '.csv'
|
||||
|
||||
tempD=split_tts(gene_dataD[gene_low]
|
||||
, data_type = data_type
|
||||
, split_type = split_type
|
||||
|
|
72
scripts/ml/ml_iterator_fs.py
Normal file → Executable file
72
scripts/ml/ml_iterator_fs.py
Normal file → Executable file
|
@ -15,6 +15,8 @@ homedir = os.path.expanduser("~")
|
|||
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
||||
sys.path
|
||||
###############################################################################
|
||||
outdir = homedir + '/git/LSHTM_ML/output/fs/'
|
||||
|
||||
#====================
|
||||
# Import ML functions
|
||||
#====================
|
||||
|
@ -31,7 +33,8 @@ combined_model_paramD = {'data_combined_model' : False
|
|||
, 'write_outfile' : False }
|
||||
###############################################################################
|
||||
#ml_genes = ["pncA", "embB", "katG", "rpoB", "gid"]
|
||||
outdir = homedir + '/git/Data/ml_combined/fs/'
|
||||
# outdir = homedir + '/git/Data/ml_combined/fs/'
|
||||
|
||||
ml_gene_drugD = {'pncA' : 'pyrazinamide'
|
||||
# , 'embB' : 'ethambutol'
|
||||
# , 'katG' : 'isoniazid'
|
||||
|
@ -39,26 +42,27 @@ ml_gene_drugD = {'pncA' : 'pyrazinamide'
|
|||
# , 'gid' : 'streptomycin'
|
||||
}
|
||||
gene_dataD={}
|
||||
#split_types = ['70_30', '80_20', 'sl']
|
||||
#split_data_types = ['actual', 'complete']
|
||||
split_types = ['70_30']
|
||||
split_types = ['70_30', '80_20', 'sl']
|
||||
split_data_types = ['actual', 'complete']
|
||||
#split_types = ['70_30']
|
||||
#split_data_types = ['actual', 'complete']
|
||||
|
||||
fs_models = [('Logistic Regression' , LogisticRegression(**rs) )]
|
||||
# fs_models = [('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
|
||||
# , ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
||||
# , ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
||||
# , ('Extra Trees' , ExtraTreesClassifier(**rs) )
|
||||
# , ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
|
||||
# , ('LDA' , LinearDiscriminantAnalysis() )
|
||||
# , ('Logistic Regression' , LogisticRegression(**rs) )
|
||||
# , ('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs))
|
||||
# , ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
|
||||
# , ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000 ) )
|
||||
# , ('Ridge Classifier' , RidgeClassifier(**rs) )
|
||||
# , ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) )
|
||||
# , ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
|
||||
# ]
|
||||
#fs_models = [('Logistic Regression' , LogisticRegression(**rs) )]
|
||||
|
||||
fs_models = [('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
|
||||
, ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
||||
, ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
||||
, ('Extra Trees' , ExtraTreesClassifier(**rs) )
|
||||
, ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
|
||||
, ('LDA' , LinearDiscriminantAnalysis() )
|
||||
, ('Logistic Regression' , LogisticRegression(**rs) )
|
||||
, ('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs))
|
||||
, ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
|
||||
, ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000 ) )
|
||||
, ('Ridge Classifier' , RidgeClassifier(**rs) )
|
||||
, ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) )
|
||||
, ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
|
||||
]
|
||||
|
||||
for gene, drug in ml_gene_drugD.items():
|
||||
print ('\nGene:', gene
|
||||
|
@ -88,25 +92,27 @@ for gene, drug in ml_gene_drugD.items():
|
|||
, 'target' : tempD['y']
|
||||
, 'var_type' : 'mixed'
|
||||
, 'resampling_type': 'none'}
|
||||
|
||||
, 'smnc_paramD' : { 'input_df' : tempD['X_smnc']
|
||||
, 'target' : tempD['y_smnc']
|
||||
, 'var_type' : 'mixed'
|
||||
, 'resampling_type' : 'smnc'}
|
||||
# , 'ros_paramD': { 'input_df' : tempD['X_ros']
|
||||
# , 'target' : tempD['y_ros']
|
||||
# , 'var_type' : 'mixed'
|
||||
# , 'resampling_type' : 'ros'}
|
||||
# , 'rus_paramD' : { 'input_df' : tempD['X_rus']
|
||||
# , 'target' : tempD['y_rus']
|
||||
# , 'var_type' : 'mixed'
|
||||
# , 'resampling_type' : 'rus'}
|
||||
# , 'rouC_paramD' : { 'input_df' : tempD['X_rouC']
|
||||
# , 'target' : tempD['y_rouC']
|
||||
# , 'var_type' : 'mixed'
|
||||
# , 'resampling_type': 'rouC'}
|
||||
|
||||
, 'ros_paramD' : { 'input_df' : tempD['X_ros']
|
||||
, 'target' : tempD['y_ros']
|
||||
, 'var_type' : 'mixed'
|
||||
, 'resampling_type' : 'ros'}
|
||||
|
||||
, 'rus_paramD' : { 'input_df' : tempD['X_rus']
|
||||
, 'target' : tempD['y_rus']
|
||||
, 'var_type' : 'mixed'
|
||||
, 'resampling_type' : 'rus'}
|
||||
|
||||
, 'rouC_paramD' : { 'input_df' : tempD['X_rouC']
|
||||
, 'target' : tempD['y_rouC']
|
||||
, 'var_type' : 'mixed'
|
||||
, 'resampling_type': 'rouC'}
|
||||
}
|
||||
#for m in fs_models:
|
||||
# print(m)
|
||||
|
||||
out_fsD = {}
|
||||
index = 1
|
||||
|
|
|
@ -1,95 +0,0 @@
|
|||
########################################################################
|
||||
|
||||
# 70/30 [WITHOUT OR]
|
||||
|
||||
########################################################################
|
||||
|
||||
=-----------------------------------=
|
||||
# actual data
|
||||
#------------------------------------=
|
||||
|
||||
time ./run_7030.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_7030_.txt
|
||||
time ./run_7030.py -g embB -d ethambutol 2>&1 | tee log_embb_7030_.txt
|
||||
time ./run_7030.py -g katG -d isoniazid 2>&1 | tee log_katg_7030_.txt
|
||||
time ./run_7030.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_7030_.txt
|
||||
time ./run_7030.py -g gid -d streptomycin 2>&1 | tee log_gid_7030_.txt
|
||||
time ./run_7030.py -g alr -d cycloserine 2>&1 | tee log_alr_7030_.txt
|
||||
|
||||
=-----------------------------------=
|
||||
# COMPLETE data
|
||||
#------------------------------------=
|
||||
|
||||
time ./run_cd_7030.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_cd_7030_.txt
|
||||
time ./run_cd_7030.py -g embB -d ethambutol 2>&1 | tee log_embb_cd_7030_.txt
|
||||
time ./run_cd_7030.py -g katG -d isoniazid 2>&1 | tee log_katg_cd_7030_.txt
|
||||
time ./run_cd_7030.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_cd_7030_.txt
|
||||
time ./run_cd_7030.py -g gid -d streptomycin 2>&1 | tee log_gid_cd_7030_.txt
|
||||
time ./run_cd_7030.py -g alr -d cycloserine 2>&1 | tee log_alr_cd_7030_.txt
|
||||
|
||||
|
||||
########################################################################
|
||||
|
||||
# 80/20 [WITHOUT OR]
|
||||
|
||||
########################################################################
|
||||
=-----------------------------------=
|
||||
# actual data
|
||||
#------------------------------------=
|
||||
|
||||
time ./run_8020.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_8020_.txt
|
||||
time ./run_8020.py -g embB -d ethambutol 2>&1 | tee log_embb_8020_.txt
|
||||
time ./run_8020.py -g katG -d isoniazid 2>&1 | tee log_katg_8020_.txt
|
||||
time ./run_8020.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_8020_.txt
|
||||
time ./run_8020.py -g gid -d streptomycin 2>&1 | tee log_gid_8020_.txt
|
||||
time ./run_8020.py -g alr -d cycloserine 2>&1 | tee log_alr_8020_.txt
|
||||
|
||||
=-----------------------------------=
|
||||
# COMPLETE data
|
||||
#------------------------------------=
|
||||
|
||||
time ./run_cd_8020.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_cd_8020_.txt
|
||||
time ./run_cd_8020.py -g embB -d ethambutol 2>&1 | tee log_embb_cd_8020_.txt
|
||||
time ./run_cd_8020.py -g katG -d isoniazid 2>&1 | tee log_katg_cd_8020_.txt
|
||||
time ./run_cd_8020.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_cd_8020_.txt
|
||||
time ./run_cd_8020.py -g gid -d streptomycin 2>&1 | tee log_gid_cd_8020_.txt
|
||||
time ./run_cd_8020.py -g alr -d cycloserine 2>&1 | tee log_alr_cd_8020_.txt
|
||||
########################################################################
|
||||
|
||||
# SL [WITHOUT OR]
|
||||
|
||||
########################################################################
|
||||
|
||||
=-----------------------------------=
|
||||
# actual data
|
||||
#------------------------------------=
|
||||
time ./run_sl.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_sl_.txt
|
||||
time ./run_sl.py -g embB -d ethambutol 2>&1 | tee log_embb_sl_.txt
|
||||
time ./run_sl.py -g katG -d isoniazid 2>&1 | tee log_katg_sl_.txt
|
||||
time ./run_sl.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_sl_.txt
|
||||
time ./run_sl.py -g gid -d streptomycin 2>&1 | tee log_gid_sl_.txt
|
||||
time ./run_sl.py -g alr -d cycloserine 2>&1 | tee log_alr_sl_.txt
|
||||
|
||||
=-----------------------------------=
|
||||
# COMPLETE data
|
||||
#------------------------------------=
|
||||
time ./run_cd_sl.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_cd_sl_.txt
|
||||
time ./run_cd_sl.py -g embB -d ethambutol 2>&1 | tee log_embb_cd_sl_.txt
|
||||
time ./run_cd_sl.py -g katG -d isoniazid 2>&1 | tee log_katg_cd_sl_.txt
|
||||
time ./run_cd_sl.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_cd_sl_.txt
|
||||
time ./run_cd_sl.py -g gid -d streptomycin 2>&1 | tee log_gid_cd_sl_.txt
|
||||
time ./run_cd_sl.py -g alr -d cycloserine 2>&1 | tee log_alr_cd_sl_.txt
|
||||
|
||||
|
||||
########################################################################
|
||||
|
||||
########################################################################
|
||||
########################################################################
|
||||
###################### Feature Selection ##########################
|
||||
########################################################################
|
||||
########################################################################
|
||||
|
||||
# 7030
|
||||
time ./run_FS.py -g pncA -d pyrazinamide 2>&1 | tee log_FS_pnca_7030.txt
|
||||
|
||||
|
||||
time ./run_FS_7030.py -g pncA -d pyrazinamide 2>&1 | tee log_FS_pnca_7030_.txt
|
Loading…
Add table
Add a link
Reference in a new issue