changed ml output dirs and ready to run fs
This commit is contained in:
parent
57348f1874
commit
11af00f1db
5 changed files with 67 additions and 152 deletions
82
scripts/ml/ml_iterator_fs.py
Normal file → Executable file
82
scripts/ml/ml_iterator_fs.py
Normal file → Executable file
|
@ -15,6 +15,8 @@ homedir = os.path.expanduser("~")
|
|||
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
||||
sys.path
|
||||
###############################################################################
|
||||
outdir = homedir + '/git/LSHTM_ML/output/fs/'
|
||||
|
||||
#====================
|
||||
# Import ML functions
|
||||
#====================
|
||||
|
@ -31,7 +33,8 @@ combined_model_paramD = {'data_combined_model' : False
|
|||
, 'write_outfile' : False }
|
||||
###############################################################################
|
||||
#ml_genes = ["pncA", "embB", "katG", "rpoB", "gid"]
|
||||
outdir = homedir + '/git/Data/ml_combined/fs/'
|
||||
# outdir = homedir + '/git/Data/ml_combined/fs/'
|
||||
|
||||
ml_gene_drugD = {'pncA' : 'pyrazinamide'
|
||||
# , 'embB' : 'ethambutol'
|
||||
# , 'katG' : 'isoniazid'
|
||||
|
@ -39,26 +42,27 @@ ml_gene_drugD = {'pncA' : 'pyrazinamide'
|
|||
# , 'gid' : 'streptomycin'
|
||||
}
|
||||
gene_dataD={}
|
||||
#split_types = ['70_30', '80_20', 'sl']
|
||||
#split_data_types = ['actual', 'complete']
|
||||
split_types = ['70_30']
|
||||
split_types = ['70_30', '80_20', 'sl']
|
||||
split_data_types = ['actual', 'complete']
|
||||
#split_types = ['70_30']
|
||||
#split_data_types = ['actual', 'complete']
|
||||
|
||||
fs_models = [('Logistic Regression' , LogisticRegression(**rs) )]
|
||||
# fs_models = [('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
|
||||
# , ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
||||
# , ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
||||
# , ('Extra Trees' , ExtraTreesClassifier(**rs) )
|
||||
# , ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
|
||||
# , ('LDA' , LinearDiscriminantAnalysis() )
|
||||
# , ('Logistic Regression' , LogisticRegression(**rs) )
|
||||
# , ('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs))
|
||||
# , ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
|
||||
# , ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000 ) )
|
||||
# , ('Ridge Classifier' , RidgeClassifier(**rs) )
|
||||
# , ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) )
|
||||
# , ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
|
||||
# ]
|
||||
#fs_models = [('Logistic Regression' , LogisticRegression(**rs) )]
|
||||
|
||||
fs_models = [('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
|
||||
, ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
||||
, ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
||||
, ('Extra Trees' , ExtraTreesClassifier(**rs) )
|
||||
, ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
|
||||
, ('LDA' , LinearDiscriminantAnalysis() )
|
||||
, ('Logistic Regression' , LogisticRegression(**rs) )
|
||||
, ('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs))
|
||||
, ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
|
||||
, ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000 ) )
|
||||
, ('Ridge Classifier' , RidgeClassifier(**rs) )
|
||||
, ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) )
|
||||
, ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
|
||||
]
|
||||
|
||||
for gene, drug in ml_gene_drugD.items():
|
||||
print ('\nGene:', gene
|
||||
|
@ -88,26 +92,28 @@ for gene, drug in ml_gene_drugD.items():
|
|||
, 'target' : tempD['y']
|
||||
, 'var_type' : 'mixed'
|
||||
, 'resampling_type': 'none'}
|
||||
,'smnc_paramD': { 'input_df' : tempD['X_smnc']
|
||||
, 'target' : tempD['y_smnc']
|
||||
, 'var_type' : 'mixed'
|
||||
, 'resampling_type' : 'smnc'}
|
||||
# , 'ros_paramD': { 'input_df' : tempD['X_ros']
|
||||
# , 'target' : tempD['y_ros']
|
||||
# , 'var_type' : 'mixed'
|
||||
# , 'resampling_type' : 'ros'}
|
||||
# , 'rus_paramD' : { 'input_df' : tempD['X_rus']
|
||||
# , 'target' : tempD['y_rus']
|
||||
# , 'var_type' : 'mixed'
|
||||
# , 'resampling_type' : 'rus'}
|
||||
# , 'rouC_paramD' : { 'input_df' : tempD['X_rouC']
|
||||
# , 'target' : tempD['y_rouC']
|
||||
# , 'var_type' : 'mixed'
|
||||
# , 'resampling_type': 'rouC'}
|
||||
|
||||
, 'smnc_paramD' : { 'input_df' : tempD['X_smnc']
|
||||
, 'target' : tempD['y_smnc']
|
||||
, 'var_type' : 'mixed'
|
||||
, 'resampling_type' : 'smnc'}
|
||||
|
||||
, 'ros_paramD' : { 'input_df' : tempD['X_ros']
|
||||
, 'target' : tempD['y_ros']
|
||||
, 'var_type' : 'mixed'
|
||||
, 'resampling_type' : 'ros'}
|
||||
|
||||
, 'rus_paramD' : { 'input_df' : tempD['X_rus']
|
||||
, 'target' : tempD['y_rus']
|
||||
, 'var_type' : 'mixed'
|
||||
, 'resampling_type' : 'rus'}
|
||||
|
||||
, 'rouC_paramD' : { 'input_df' : tempD['X_rouC']
|
||||
, 'target' : tempD['y_rouC']
|
||||
, 'var_type' : 'mixed'
|
||||
, 'resampling_type': 'rouC'}
|
||||
}
|
||||
#for m in fs_models:
|
||||
# print(m)
|
||||
|
||||
|
||||
out_fsD = {}
|
||||
index = 1
|
||||
for model_name, model_fn in fs_models:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue