separted cols
This commit is contained in:
parent
e750ee59aa
commit
0d8979dfcb
2 changed files with 129 additions and 156 deletions
|
@ -53,54 +53,85 @@ all_colnames = as.data.frame(colnames(df3))
|
|||
common_cols = c("mutationinformation"
|
||||
, "position"
|
||||
, "dst_mode"
|
||||
#, "mutation_info_labels"
|
||||
, "mutation_info_labels"
|
||||
, "sensitivity"
|
||||
, "ligand_distance")
|
||||
|
||||
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
|
||||
scaled_cols = c("duet_scaled" , "duet_stability_change"
|
||||
, "deepddg_scaled" , "deepddg"
|
||||
, "ddg_dynamut2_scaled" , "ddg_dynamut2"
|
||||
, "foldx_scaled" , "ddg_foldx"
|
||||
, "affinity_scaled" , "ligand_affinity_change"
|
||||
, "mmcsm_lig_scaled" , "mmcsm_lig"
|
||||
, "mcsm_ppi2_scaled" , "mcsm_ppi2_affinity"
|
||||
, "mcsm_na_scaled" , "mcsm_na_affinity"
|
||||
#, "consurf_scaled" , "consurf_score"
|
||||
#, "snap2_scaled" , "snap2_score"
|
||||
#, "provean_scaled" , "provean_score"
|
||||
)
|
||||
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
|
||||
outcome_cols_aff = c("duet_outcome"
|
||||
, "deepddg_outcome"
|
||||
, "ddg_dynamut2_outcome"
|
||||
, "foldx_outcome"
|
||||
#, "ddg_foldx", "foldx_scaled"
|
||||
, "ligand_outcome"
|
||||
, "mmcsm_lig_outcome"
|
||||
, "mcsm_ppi2_outcome"
|
||||
, "mcsm_na_outcome"
|
||||
# consurf outcome doesn't exist
|
||||
#,"provean_outcome"
|
||||
#,"snap2_outcome"
|
||||
)
|
||||
|
||||
#===================
|
||||
# stability cols
|
||||
#===================
|
||||
raw_cols_stability = c("duet_stability_change"
|
||||
, "deepddg"
|
||||
, "ddg_dynamut2"
|
||||
, "ddg_foldx")
|
||||
|
||||
scaled_cols_stability = c("duet_scaled"
|
||||
, "deepddg_scaled"
|
||||
, "ddg_dynamut2_scaled"
|
||||
, "foldx_scaled")
|
||||
|
||||
outcome_cols_stability = c("duet_outcome"
|
||||
, "deepddg_outcome"
|
||||
, "ddg_dynamut2_outcome"
|
||||
, "foldx_outcome")
|
||||
|
||||
#===================
|
||||
# affinity cols
|
||||
#===================
|
||||
raw_cols_affinity = c("ligand_affinity_change"
|
||||
, "mmcsm_lig"
|
||||
, "mcsm_ppi2_affinity"
|
||||
, "mcsm_na_affinity")
|
||||
|
||||
scaled_cols_affinity = c("affinity_scaled"
|
||||
, "mmcsm_lig_scaled"
|
||||
, "mcsm_ppi2_scaled"
|
||||
, "mcsm_na_scaled" )
|
||||
|
||||
outcome_cols_affinity = c( "ligand_outcome"
|
||||
, "mmcsm_lig_outcome"
|
||||
, "mcsm_ppi2_outcome"
|
||||
, "mcsm_na_outcome")
|
||||
|
||||
#===================
|
||||
# conservation cols
|
||||
#===================
|
||||
# raw_cols_conservation = c("consurf_score"
|
||||
# , "snap2_score"
|
||||
# , "provean_score")
|
||||
#
|
||||
# scaled_cols_conservation = c("consurf_scaled"
|
||||
# , "snap2_scaled"
|
||||
# , "provean_scaled")
|
||||
#
|
||||
# # CANNOT strictly be used, as categories are not identical with conssurf missing altogether
|
||||
# outcome_cols_conservation = c("provean_outcome"
|
||||
# , "snap2_outcome"
|
||||
# #consurf outcome doesn't exist
|
||||
# )
|
||||
|
||||
###########################################################
|
||||
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols
|
||||
, scaled_cols
|
||||
, outcome_cols)]
|
||||
, raw_cols_stability
|
||||
, scaled_cols_stability
|
||||
, outcome_cols_stability)]
|
||||
|
||||
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols
|
||||
, outcome_cols)]
|
||||
, outcome_cols_stability)]
|
||||
|
||||
##############################################################
|
||||
#####################
|
||||
# Ensemble stability
|
||||
# Ensemble stability: outcome_cols_stability
|
||||
#####################
|
||||
# extract outcome cols and map numeric values to the categories
|
||||
# Destabilising == 0, and stabilising == 1, so rescaling can let -1 be destabilising
|
||||
df3_plot = df3[, cols_to_extract]
|
||||
|
||||
# assign numeric values to outcome
|
||||
df3_plot[, outcome_cols] <- sapply(df3_plot[, outcome_cols]
|
||||
df3_plot[, outcome_cols_stability] <- sapply(df3_plot[, outcome_cols_stability]
|
||||
, function(x){ifelse(x == "Destabilising", 0, 1)})
|
||||
table(df3$duet_outcome)
|
||||
table(df3_plot$duet_outcome)
|
||||
|
@ -111,7 +142,7 @@ table(df3_plot$duet_outcome)
|
|||
|
||||
# column to average: ens_stability
|
||||
#=====================================
|
||||
cols_to_average = which(colnames(df3_plot)%in%outcome_cols)
|
||||
cols_to_average = which(colnames(df3_plot)%in%outcome_cols_stability)
|
||||
|
||||
# ensemble average across predictors
|
||||
df3_plot$ens_stability = rowMeans(df3_plot[,cols_to_average])
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue