tidy code and renamed kd.py to kd_df.py
This commit is contained in:
parent
4c2fa2b600
commit
0b7a938fbd
6 changed files with 156 additions and 194 deletions
181
meta_data_analysis/kd_df.py
Normal file
181
meta_data_analysis/kd_df.py
Normal file
|
@ -0,0 +1,181 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
'''
|
||||
Created on Tue Aug 6 12:56:03 2019
|
||||
|
||||
@author: tanu
|
||||
'''
|
||||
#=======================================================================
|
||||
# Task: Hydrophobicity (Kd) values for amino acid sequence using the
|
||||
# Kyt&-Doolittle.
|
||||
# Same output as using the expasy server https://web.expasy.org/protscale/
|
||||
# Input: fasta file
|
||||
|
||||
# Output: csv file with
|
||||
|
||||
|
||||
# useful links
|
||||
# https://biopython.org/DIST/docs/api/Bio.SeqUtils.ProtParamData-pysrc.html
|
||||
# https://jbloomlab.github.io/dms_tools2/dms_tools2.dssp.html
|
||||
#=======================================================================
|
||||
#%% load packages
|
||||
from pylab import *
|
||||
from Bio.SeqUtils import ProtParamData
|
||||
from Bio.SeqUtils.ProtParam import ProteinAnalysis
|
||||
from Bio import SeqIO
|
||||
#from Bio.Alphabet.IUPAC import IUPACProtein
|
||||
#import pprint as pp
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import sys, os
|
||||
#=======================================================================
|
||||
#%% specify input and curr dir
|
||||
homedir = os.path.expanduser('~')
|
||||
|
||||
# set working dir
|
||||
os.getcwd()
|
||||
os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis')
|
||||
os.getcwd()
|
||||
#=======================================================================
|
||||
#%% variable assignment: input and output
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = gene + '_p.'
|
||||
|
||||
#==========
|
||||
# data dir
|
||||
#==========
|
||||
#indir = 'git/Data/pyrazinamide/input/original'
|
||||
datadir = homedir + '/' + 'git/Data'
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
#indir = 'git/Data/pyrazinamide/input/original'
|
||||
indir = datadir + '/' + drug + '/' + 'input'
|
||||
in_filename = '3pl1.fasta.txt'
|
||||
infile = indir + '/' + in_filename
|
||||
print('Input filename:', in_filename
|
||||
, '\nInput path:', indir)
|
||||
|
||||
print('======================================================================')
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
outdir = datadir + '/' + drug + '/' + 'output'
|
||||
out_filename = gene.lower() + '_kd.csv'
|
||||
outfile = outdir + '/' + out_filename
|
||||
print('Output filename:', out_filename
|
||||
, '\nOutput path:', outdir)
|
||||
|
||||
print('======================================================================')
|
||||
#%% end of variable assignment for input and output files
|
||||
#=======================================================================
|
||||
#%%specify window size for hydropathy profile computation
|
||||
# https://web.expasy.org/protscale/pscale/protscale_help.html
|
||||
my_window = 3
|
||||
offset = round((my_window/2)-0.5)
|
||||
|
||||
fh = open(infile)
|
||||
|
||||
for record in SeqIO.parse(fh, 'fasta'):
|
||||
id = record.id
|
||||
seq = record.seq
|
||||
num_residues = len(seq)
|
||||
fh.close()
|
||||
|
||||
sequence = str(seq)
|
||||
|
||||
X = ProteinAnalysis(sequence)
|
||||
|
||||
kd_values = (X.protein_scale(ProtParamData.kd , window = my_window)) # edge weight is set to default (100%)
|
||||
|
||||
# sanity checks
|
||||
print('Sequence Length:', num_residues)
|
||||
print('kd_values Length:',len(kd_values))
|
||||
print('Window Length:', my_window)
|
||||
print('Window Offset:', offset)
|
||||
print('======================================================================')
|
||||
print('Checking:len(kd values) is as expected for the given window size & offset...')
|
||||
expected_length = num_residues - (my_window - offset)
|
||||
if len(kd_values) == expected_length:
|
||||
print('PASS: expected and actual length of kd values match')
|
||||
else:
|
||||
print('FAIL: length mismatch'
|
||||
,'\nExpected length:', expected_length
|
||||
,'\nActual length:', len(kd_values))
|
||||
|
||||
print('======================================================================')
|
||||
#%% make 2 dfs; 1) aa sequence and 2) kd_values. Then reset index for each df
|
||||
# which will allow easy merging of the two dfs.
|
||||
|
||||
# df1: df of aa seq with index reset to start from 1 (reflective of the actual aa position in a sequence)
|
||||
# Name column of wt as 'wild_type' to be the same name used in the file required for merging later.
|
||||
dfSeq = pd.DataFrame({'wild_type':list(sequence)})
|
||||
dfSeq.index = np.arange(1, len(dfSeq) + 1) # python is not inclusive
|
||||
|
||||
# df2: df of kd_values with index reset to start from offset + 1 and subsequent matched length of the kd_values
|
||||
dfVals = pd.DataFrame({'kd_values':kd_values})
|
||||
dfVals.index = np.arange(offset + 1, len(dfVals) + 1 + offset)
|
||||
|
||||
# sanity checks
|
||||
max(dfVals['kd_values'])
|
||||
min(dfVals['kd_values'])
|
||||
|
||||
#============
|
||||
# merging dfs
|
||||
#============
|
||||
# Merge the two on index (as these are now reflective of the aa position numbers): df1 and df2
|
||||
# This will introduce NaN where there is missing values. In our case this will be 2 (first and last ones)
|
||||
# Conveniently, the last position in this case is not part of the struc, so not much loss of info
|
||||
# Needless to state that this will be variable for other targets.
|
||||
|
||||
kd_df = pd.concat([dfSeq, dfVals], axis = 1)
|
||||
|
||||
#============================
|
||||
# Renaming index to position
|
||||
#============================
|
||||
kd_df = kd_df.rename_axis('position')
|
||||
kd_df.head
|
||||
print('======================================================================')
|
||||
|
||||
print('position col i.e. index should be numeric')
|
||||
print('======================================================================')
|
||||
if kd_df.index.dtype == 'int64':
|
||||
print('PASS: position col is numeric'
|
||||
, '\ndtype is:', kd_df.index.dtype)
|
||||
else:
|
||||
print('FAIL: position col is not numeric'
|
||||
, '\nConverting to numeric')
|
||||
kd_df.index.astype('int64')
|
||||
print('Checking dtype for after conversion:\n'
|
||||
,'\ndtype is:', kd_df.index.dtype)
|
||||
|
||||
print('======================================================================')
|
||||
#%% write file
|
||||
print('Writing file:', out_filename
|
||||
, '\nFilename:', out_filename
|
||||
, '\nPath:', outdir)
|
||||
|
||||
kd_df.to_csv(outfile, header = True, index = True)
|
||||
|
||||
print('Finished writing:', out_filename
|
||||
, '\nNo. of rows:', len(kd_df)
|
||||
, '\nNo. of cols:', len(kd_df.columns))
|
||||
|
||||
#%% plot
|
||||
# http://www.dalkescientific.com/writings/NBN/plotting.html
|
||||
|
||||
# FIXME: save fig
|
||||
# extract just pdb if from 'id' to pass to title of plot
|
||||
# foo = re.match(r'(^[0-9]{1}\w{3})', id).groups(1)
|
||||
plot(kd_values, linewidth = 1.0)
|
||||
#axis(xmin = 1, xmax = num_residues)
|
||||
xlabel('Residue Number')
|
||||
ylabel('Hydrophobicity')
|
||||
title('K&D Hydrophobicity for ' + id)
|
||||
show()
|
||||
|
||||
print('======================================================================')
|
||||
#%% end of script
|
||||
#=======================================================================
|
Loading…
Add table
Add a link
Reference in a new issue