renamed files & added or kinship link file
This commit is contained in:
parent
c36197d75e
commit
07258120de
3 changed files with 646 additions and 0 deletions
385
scripts/af_or_calcs_scratch.R
Normal file
385
scripts/af_or_calcs_scratch.R
Normal file
|
@ -0,0 +1,385 @@
|
|||
#########################################################
|
||||
# TASK: To compare OR from master data
|
||||
# chisq, fisher test and logistic and adjusted logistic
|
||||
#########################################################
|
||||
getwd()
|
||||
setwd('~/git/LSHTM_analysis/scripts')
|
||||
getwd()
|
||||
|
||||
#install.packages("logistf")
|
||||
library(logistf)
|
||||
#########################################################
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = paste0(gene,'_p.')
|
||||
cat(gene_match)
|
||||
|
||||
#===========
|
||||
# input and output dirs
|
||||
#===========
|
||||
datadir = paste0('~/git/Data')
|
||||
indir = paste0(datadir, '/', drug, '/', 'input')
|
||||
outdir = paste0(datadir, '/', drug, '/', 'output')
|
||||
|
||||
#===========
|
||||
# input and output files
|
||||
#===========
|
||||
in_filename = 'original_tanushree_data_v2.csv'
|
||||
#in_filename = 'mtb_gwas_v3.csv'
|
||||
infile = paste0(datadir, '/', in_filename)
|
||||
cat(paste0('Reading infile1: raw data', ' ', infile) )
|
||||
|
||||
# infile2: _gene associated meta data file to extract valid snps and add calcs to.
|
||||
# This is outfile3 from data_extraction.py
|
||||
in_filename_metadata = paste0(tolower(gene), '_metadata.csv')
|
||||
infile_metadata = paste0(outdir, '/', in_filename_metadata)
|
||||
cat(paste0('Reading infile2: gene associated metadata:', infile_metadata))
|
||||
|
||||
#===========
|
||||
# output
|
||||
#===========
|
||||
out_filename = paste0(tolower(gene),'_', 'meta_data_with_AF_OR.csv')
|
||||
outfile = paste0(outdir, '/', out_filename)
|
||||
cat(paste0('Output file with full path:', outfile))
|
||||
#%% end of variable assignment for input and output files
|
||||
|
||||
#########################################################
|
||||
# 1: Read master/raw data stored in Data/
|
||||
#####################################################
|
||||
|
||||
#===============
|
||||
# Step 1: read raw data (all remove entries with NA in pza column)
|
||||
#===============
|
||||
raw_data_all = read.csv(infile, stringsAsFactors = F)
|
||||
|
||||
# building cols to extract
|
||||
dr_muts_col = paste0('dr_mutations_', drug)
|
||||
other_muts_col = paste0('other_mutations_', drug)
|
||||
|
||||
cat('Extracting columns based on variables:\n'
|
||||
, drug
|
||||
, '\n'
|
||||
, dr_muts_col
|
||||
, '\n'
|
||||
, other_muts_col
|
||||
, '\n===============================================================')
|
||||
|
||||
raw_data = raw_data_all[,c("id"
|
||||
, drug
|
||||
, dr_muts_col
|
||||
, other_muts_col)]
|
||||
rm(raw_data_all)
|
||||
|
||||
rm(indir, in_filename, infile)
|
||||
|
||||
#===========
|
||||
# 1a: exclude na
|
||||
#===========
|
||||
raw_data = raw_data[!is.na(raw_data[[drug]]),]
|
||||
|
||||
total_samples = length(unique(raw_data$id))
|
||||
cat(paste0('Total samples without NA in', ' ', drug, 'is:', total_samples))
|
||||
|
||||
# sanity check: should be true
|
||||
is.numeric(total_samples)
|
||||
|
||||
#===========
|
||||
# 1b: combine the two mutation columns
|
||||
#===========
|
||||
#raw_data$all_mutations_pyrazinamide = paste(raw_data$dr_mutations_pyrazinamide, raw_data$other_mutations_pyrazinamide)
|
||||
|
||||
all_muts_colname = paste0('all_mutations_', drug)
|
||||
raw_data[[all_muts_colname]] = paste(raw_data[[dr_muts_col]], raw_data[[other_muts_col]])
|
||||
head(raw_data[[all_muts_colname]])
|
||||
|
||||
#===========
|
||||
# 1c: create yet another column that contains all the mutations but in lower case
|
||||
#===========
|
||||
head(raw_data[[all_muts_colname]])
|
||||
raw_data$all_muts_gene = tolower(raw_data[[all_muts_colname]])
|
||||
head(raw_data$all_muts_gene)
|
||||
|
||||
# sanity checks
|
||||
#table(grepl("gene_p",raw_data$all_muts_gene))
|
||||
cat(paste0('converting gene match:', gene_match, ' ', 'to lowercase'))
|
||||
gene_match = tolower(gene_match)
|
||||
|
||||
table(grepl(gene_match,raw_data$all_muts_gene))
|
||||
|
||||
# sanity check
|
||||
if(sum(table(grepl(gene_match, raw_data$all_muts_gene))) == total_samples){
|
||||
cat('PASS: Total no. of samples match')
|
||||
} else{
|
||||
cat('FAIL: No. of samples mismatch')
|
||||
}
|
||||
|
||||
#########################################################
|
||||
# 2: Read valid snps for which OR
|
||||
# can be calculated
|
||||
#########################################################
|
||||
cat(paste0('Reading metadata infile:', infile_metadata))
|
||||
|
||||
gene_metadata = read.csv(infile_metadata
|
||||
#, file.choose()
|
||||
, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
|
||||
# clear variables
|
||||
rm(in_filename_metadata, infile_metadata)
|
||||
|
||||
# count na in pyrazinamide column
|
||||
tot_pza_na = sum(is.na(gene_metadata$pyrazinamide))
|
||||
expected_rows = nrow(gene_metadata) - tot_pza_na
|
||||
|
||||
# drop na from the pyrazinamide colum
|
||||
gene_snps_or = gene_metadata[!is.na(gene_metadata[[drug]]),]
|
||||
|
||||
# sanity check
|
||||
if(nrow(gene_snps_or) == expected_rows){
|
||||
cat('PASS: no. of rows match with expected_rows')
|
||||
} else{
|
||||
cat('FAIL: nrows mismatch.')
|
||||
}
|
||||
|
||||
# extract unique snps to iterate over for AF and OR calcs
|
||||
gene_snps_unique = unique(gene_snps_or$mutation)
|
||||
|
||||
cat(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(gene_snps_unique)))
|
||||
|
||||
#=====================================
|
||||
#OR calcs using the following 4
|
||||
#1) chisq.test
|
||||
#2) fisher
|
||||
#3) modified chisq.test
|
||||
#4) logistic
|
||||
#5) adjusted logistic?
|
||||
#6) kinship (separate script)
|
||||
|
||||
#======================================
|
||||
|
||||
################# modified chisq OR
|
||||
# Define OR function
|
||||
#x = as.numeric(mut)
|
||||
#y = dst
|
||||
my_chisq_or = function(x,y){
|
||||
tab = as.matrix(table(x,y))
|
||||
a = tab[2,2]
|
||||
if (a==0){ a<-0.5}
|
||||
b = tab[2,1]
|
||||
if (b==0){ b<-0.5}
|
||||
c = tab[1,2]
|
||||
if (c==0){ c<-0.5}
|
||||
d = tab[1,1]
|
||||
if (d==0){ d<-0.5}
|
||||
(a/b)/(c/d)
|
||||
|
||||
}
|
||||
|
||||
#========================
|
||||
# TEST WITH ONE
|
||||
|
||||
i = "pnca_p.trp68gly"
|
||||
i = "pnca_p.gln10pro"
|
||||
i = "pnca_p.leu159arg"
|
||||
|
||||
# IV
|
||||
table(grepl(i,raw_data$all_muts_gene))
|
||||
mut = grepl(i,raw_data$all_muts_gene)
|
||||
|
||||
# DV
|
||||
#dst = raw_data$pyrazinamide
|
||||
dst = raw_data[[drug]] # or raw_data[,drug]
|
||||
|
||||
# 2X2 table
|
||||
table(mut, dst)
|
||||
|
||||
# CV
|
||||
#c = raw_data$id[mut]
|
||||
c = raw_data$id[grepl(i,raw_data$all_muts_gene)]
|
||||
#sid = grepl(raw_data$id[mut], raw_data$id) # warning
|
||||
#argument 'pattern' has length > 1 and only the first element will be used
|
||||
#grepl(raw_data$id=="ERR2512440", raw_data$id)
|
||||
|
||||
sid = grepl(paste(c,collapse="|"), raw_data$id)
|
||||
table(sid)
|
||||
|
||||
# 3X2 table
|
||||
table(mut, dst, sid)
|
||||
|
||||
#============================
|
||||
# compare OR
|
||||
chisq.test(table(mut,dst))
|
||||
fisher.test(table(mut, dst))
|
||||
fisher.test(table(mut, dst))$p.value
|
||||
fisher.test(table(mut, dst))$estimate
|
||||
my_chisq_or(mut,dst)
|
||||
|
||||
# logistic or
|
||||
summary(model<-glm(dst ~ mut, family = binomial))
|
||||
or_logistic = exp(summary(model)$coefficients[2,1]); print(or_logistic)
|
||||
pval_logistic = summary(model)$coefficients[2,4]; print(pval_logistic)
|
||||
|
||||
# adjusted logistic or
|
||||
summary(model2<-glm(dst ~ mut + sid, family = binomial))
|
||||
or_logistic2 = exp(summary(model2)$coefficients[2,1]); print(or_logistic2)
|
||||
pval_logistic2 = summary(model2)$coefficients[2,4]; print(pval_logistic2)
|
||||
|
||||
#=========================
|
||||
|
||||
ors = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
my_chisq_or(mut,dst)
|
||||
})
|
||||
|
||||
ors
|
||||
|
||||
pvals = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
fisher.test(mut,dst)$p.value
|
||||
})
|
||||
|
||||
pvals
|
||||
|
||||
afs = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
mean(mut)
|
||||
})
|
||||
|
||||
afs
|
||||
|
||||
# logistic
|
||||
logistic_ors = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
model<-glm(dst ~ mut, family = binomial)
|
||||
or_logistic = exp(summary(model)$coefficients[2,1])
|
||||
#pval_logistic = summary(model)$coefficients[2,4]
|
||||
})
|
||||
logistic_ors
|
||||
|
||||
|
||||
# logistic adj # Doesn't seem to make a difference
|
||||
logistic_ors2 = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
c = raw_data$id[mut]
|
||||
sid = grepl(paste(c,collapse="|"), raw_data$id)
|
||||
model2<-glm(dst ~ mut + sid, family = binomial)
|
||||
or_logistic2 = exp(summary(model2)$coefficients[2,1])
|
||||
#pval_logistic2 = summary(model2)$coefficients[2,4]
|
||||
})
|
||||
|
||||
logistic_ors2
|
||||
|
||||
or_logistic2; pval_logistic2
|
||||
|
||||
|
||||
head(logistic_ors)
|
||||
#====================================
|
||||
|
||||
# logistic
|
||||
summary(model<-glm(dst ~ mut
|
||||
, family = binomial
|
||||
#, control = glm.control(maxit = 1)
|
||||
#, options(warn = 1)
|
||||
))
|
||||
or_logistic_maxit = exp(summary(model)$coefficients[2,1]); print(or_logistic_maxit)
|
||||
pval_logistic_maxit = summary(model)$coefficients[2,4]; print(pval_logistic_maxit)
|
||||
|
||||
|
||||
#####################
|
||||
# iterate: subset
|
||||
#####################
|
||||
|
||||
snps_test = c("pnca_p.trp68gly", "pnca_p.leu4ser", "pnca_p.leu159arg","pnca_p.his57arg" )
|
||||
|
||||
data = snps_test[1:2]
|
||||
|
||||
data
|
||||
|
||||
|
||||
|
||||
|
||||
################# start loop
|
||||
for (i in data){
|
||||
|
||||
print(i)
|
||||
|
||||
# IV
|
||||
#mut<-as.numeric(grepl(i,raw_data$all_muts_gene))
|
||||
mut = grepl(i,raw_data$all_muts_gene)
|
||||
table(mut)
|
||||
|
||||
# DV
|
||||
#dst<-as.numeric(raw_data[[drug]])
|
||||
dst = raw_data[[drug]]
|
||||
|
||||
# table
|
||||
print(table(dst, mut))
|
||||
|
||||
|
||||
#=====================
|
||||
# logistic regression, glm.control(maxit = n)
|
||||
#https://stats.stackexchange.com/questions/11109/how-to-deal-with-perfect-separation-in-logistic-regression
|
||||
#=====================
|
||||
#n = 1
|
||||
summary(model<-glm(dst ~ mut
|
||||
, family = binomial
|
||||
#, control = glm.control(maxit = 1)
|
||||
#, options(warn = 1)
|
||||
))
|
||||
or_logistic_maxit = exp(summary(model)$coefficients[2,1]); print(or_logistic_maxit)
|
||||
pval_logistic_maxit = summary(model)$coefficients[2,4]; print(pval_logistic_maxit)
|
||||
|
||||
#=====================
|
||||
# fishers test
|
||||
#=====================
|
||||
#attributes(fisher.test(table(dst, mut)))
|
||||
or_fisher = fisher.test(table(dst, mut))$estimate
|
||||
or_fisher = or_fisher[[1]]; or_fisher
|
||||
|
||||
pval_fisher = fisher.test(table(dst, mut))$p.value ; pval_fisher
|
||||
|
||||
#=====================
|
||||
# chi square
|
||||
#=====================
|
||||
#chisq.test(y = dst, x = mut)
|
||||
#attributes(chisq.test(table(dst, mut)))
|
||||
est_chisq = chisq.test(table(dst, mut))$statistic
|
||||
est_chisq = est_chisq[[1]]; est_chisq
|
||||
|
||||
pval_chisq = chisq.test(table(dst, mut))$p.value; pval_chisq
|
||||
|
||||
# all output
|
||||
writeLines(c(paste0("mutation:", i)
|
||||
, paste0("=========================")
|
||||
, paste0("OR_logistic_maxit:", or_logistic_maxit,"--->", "P-val_logistic_maxit:", pval_logistic_maxit )
|
||||
, paste0("OR_fisher:", or_fisher, "--->","P-val_fisher:", pval_fisher )
|
||||
, paste0("Chi_sq_estimate:", est_chisq, "--->","P-val_chisq:", pval_chisq)))
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
i = "gene_p.leu159arg"
|
||||
|
||||
mut<-as.numeric(grepl(i,raw_data$all_muts_pza))
|
||||
# DV
|
||||
dst<-as.numeric(raw_data$pyrazinamide)
|
||||
# tablehttps://mail.google.com/mail/?tab=rm&ogbl
|
||||
table(dst, mut)
|
||||
|
||||
#=====================
|
||||
# fishers test
|
||||
#=====================
|
||||
#attributes(fisher.test(table(dst, mut)))
|
||||
or_fisher = fisher.test(table(dst, mut))$estimate
|
||||
or_fisher = or_fisher[[1]]; or_fisher
|
||||
|
||||
pval_fisher = fisher.test(table(dst, mut))$p.value ; pval_fisher
|
||||
|
||||
|
||||
# https://stats.stackexchange.com/questions/259635/what-is-the-difference-using-a-fishers-exact-test-vs-a-logistic-regression-for
|
||||
exact2x2(table(dst, mut),tsmethod="central")
|
||||
|
||||
|
261
scripts/or_kinship_link.py
Executable file
261
scripts/or_kinship_link.py
Executable file
|
@ -0,0 +1,261 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed Jun 10 11:13:49 2020
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% useful links
|
||||
|
||||
#https://chrisalbon.com/python/data_wrangling/pandas_join_merge_dataframe/
|
||||
#https://kanoki.org/2019/11/12/how-to-use-regex-in-pandas/
|
||||
#https://stackoverflow.com/questions/40348541/pandas-diff-with-string
|
||||
#%%
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
#import numpy as np
|
||||
import re
|
||||
from find_missense import find_missense
|
||||
import argparse
|
||||
|
||||
#%%
|
||||
# homedir
|
||||
homedir = os.path.expanduser('~')
|
||||
#os.chdir(homedir + '/git/Misc/jody_pza')
|
||||
#=======================================================================
|
||||
#%% command line args
|
||||
arg_parser = argparse.ArgumentParser()
|
||||
#arg_parser.add_argument('-d', '--drug', help='drug name', default = 'pyrazinamide')
|
||||
#arg_parser.add_argument('-g', '--gene', help='gene name', default = 'pncA') # case sensitive
|
||||
arg_parser.add_argument('-d', '--drug', help = 'drug name', default = None)
|
||||
arg_parser.add_argument('-g', '--gene', help = 'gene name (case sensitive)', default = None) # case sensitive
|
||||
|
||||
#arg_parser.add_argument('-p', '--outpath', help = 'output path', default = outpath)
|
||||
#arg_parser.add_argument('-o', '--outfile', help = 'output filename', default = outfile_or_kin)
|
||||
|
||||
arg_parser.add_argument('-s', '--start_coord', help = 'start of coding region (cds) of gene', default = 2288681) # pnca cds
|
||||
arg_parser.add_argument('-e', '--end_coord', help = 'end of coding region (cds) of gene', default = 2289241) # pnca cds
|
||||
|
||||
args = arg_parser.parse_args()
|
||||
#=======================================================================
|
||||
#%% variables
|
||||
#or_file
|
||||
#info_file
|
||||
#short_info_file
|
||||
#gene = 'pncA'
|
||||
#drug = 'pyrazinamide'
|
||||
start_cds = args.start_coord
|
||||
end_cds = args.end_coord
|
||||
|
||||
gene = args.gene
|
||||
drug = args.drug
|
||||
#=======================================================================
|
||||
#%% input and output dirs and files
|
||||
#=======
|
||||
# data dir
|
||||
#=======
|
||||
datadir = homedir + '/' + 'git/Data'
|
||||
indir = datadir + '/' + drug + '/input'
|
||||
outdir = datadir + '/' + drug + '/output'
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
|
||||
info_filename = 'snp_info.txt'
|
||||
snp_info = datadir + '/' + info_filename
|
||||
print('Info file: ', snp_info
|
||||
, '\n============================================================')
|
||||
|
||||
|
||||
gene_info_filename = 'ns'+ gene.lower()+ '_snp_info.txt'
|
||||
gene_info = indir + '/' + gene_info_filename
|
||||
print('gene info file: ', gene_info
|
||||
, '\n============================================================')
|
||||
|
||||
|
||||
in_filename_or = 'ns'+ gene.lower()+ '_assoc.txt'
|
||||
gene_or = indir + '/' + in_filename_or
|
||||
print('gene OR file: ', gene_or
|
||||
, '\n============================================================')
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
gene_or_filename = gene.lower() + '_AF_OR_kinship.csv' # other one is called AFandOR
|
||||
outfile_or_kin = outdir + '/' + gene_or_filename
|
||||
print('Output file: ', outfile_or_kin
|
||||
, '\n============================================================')
|
||||
|
||||
#%% read files: preformatted using bash
|
||||
# or file: '...assoc.txt'
|
||||
or_df = pd.read_csv(gene_or, sep = '\t', header = 0, index_col = False) # 182, 12 (without filtering for missense muts, it was 212 i.e we 30 muts weren't missense)
|
||||
or_df.head()
|
||||
or_df.columns
|
||||
#%% snp_info file: master and gene specific ones
|
||||
|
||||
# gene info
|
||||
#info_df2 = pd.read_csv('nssnp_info_pnca.txt', sep = '\t', header = 0) #303, 10
|
||||
info_df2 = pd.read_csv(gene_info, sep = '\t', header = 0) #303, 10
|
||||
mis_mut_cover = (info_df2['chromosome_number'].nunique()/info_df2['chromosome_number'].count()) * 100
|
||||
print('*****RESULT*****'
|
||||
, '\nPercentage of missense mut in pncA:', mis_mut_cover
|
||||
, '\n*****RESULT*****') #65.7%
|
||||
|
||||
# large file
|
||||
#info_df = pd.read_csv('snp_info.txt', sep = '\t', header = None) #12010
|
||||
info_df = pd.read_csv(snp_info, sep = '\t') #12010
|
||||
#info_df.columns = ['chromosome_number', 'ref_allele', 'alt_allele', 'snp_info'] #12009, 4
|
||||
|
||||
info_df['chromosome_number'].nunique() #10257
|
||||
mut_cover = (info_df['chromosome_number'].nunique()/info_df['chromosome_number'].count()) * 100
|
||||
print('*****RESULT*****'
|
||||
,'\nPercentage of mutations in pncA:', mut_cover
|
||||
, '\n*****RESULT*****') #85.4%
|
||||
|
||||
# extract unique chr position numbers
|
||||
genomic_pos = info_df['chromosome_number'].unique()
|
||||
genomic_pos_df = pd.DataFrame(genomic_pos, columns = ['chr_pos'])
|
||||
genomic_pos_df.dtypes
|
||||
|
||||
genomic_pos_min = info_df['chromosome_number'].min()
|
||||
genomic_pos_max = info_df['chromosome_number'].max()
|
||||
|
||||
# genomic coord for pnca coding region
|
||||
#start_cds = 2288681
|
||||
#end_cds = 2289241
|
||||
cds_len = (end_cds-start_cds) + 1
|
||||
pred_prot_len = (cds_len/3) - 1
|
||||
|
||||
# mindblowing: difference b/w bitwise (&) and 'and'
|
||||
# DO NOT want &: is this bit set to '1' in both variables? Is this what you want?
|
||||
#if (genomic_pos_min <= start_cds) & (genomic_pos_max >= end_cds):
|
||||
print('*****RESULT*****'
|
||||
, '\nlength of coding region:', cds_len, 'bp'
|
||||
, '\npredicted protein length:', pred_prot_len, 'aa'
|
||||
, '\n*****RESULT*****')
|
||||
|
||||
if genomic_pos_min <= start_cds and genomic_pos_max >= end_cds:
|
||||
print ('PASS: coding region for gene included in snp_info.txt')
|
||||
else:
|
||||
print('FAIL: coding region for gene not included in info file snp_info.txt')
|
||||
|
||||
#%% Extracting ref allele and alt allele as single letters
|
||||
# info_df has some of these params as more than a single letter, which means that
|
||||
# when you try to merge ONLY using chromosome_number, then it messes up... and is WRONG.
|
||||
# Hence the merge needs to be performed on a unique set of attributes which in our case
|
||||
# would be chromosome_number, ref_allele and alt_allele
|
||||
|
||||
#FIXME: Turn to a function
|
||||
orig_len = len(or_df.columns)
|
||||
|
||||
#find_missense(or_df, 'ref_allele1', 'alt_allele0')
|
||||
find_missense(or_df, ref_allele_column = 'ref_allele1', alt_allele_column = 'alt_allele0')
|
||||
|
||||
ncols_add = 4
|
||||
if len(or_df.columns) == orig_len + ncols_add:
|
||||
print('PASS: Succesfuly extracted ref and alt alleles for missense muts')
|
||||
else:
|
||||
print('FAIL: No. of cols mismatch'
|
||||
,'\noriginal length:', orig_len
|
||||
, '\nExpected no. of cols:', orig_len + ncols_add
|
||||
, '\nGot no. of cols:', len(or_df.columns))
|
||||
sys.exit()
|
||||
del(orig_len, ncols_add)
|
||||
|
||||
#%% TRY MERGE
|
||||
# check dtypes
|
||||
or_df.dtypes
|
||||
info_df.dtypes
|
||||
or_df.info()
|
||||
|
||||
# pandas documentation where it mentions: "Pandas uses the object dtype for storing strings"
|
||||
# check how many unique chr_num in info_df are in or_df
|
||||
genomic_pos_df['chr_pos'].isin(or_df['chromosome_number']).sum() #144
|
||||
|
||||
# check how many chr_num in or_df are in info_df: should be ALL of them
|
||||
or_df['chromosome_number'].isin(genomic_pos_df['chr_pos']).sum() #182
|
||||
|
||||
# sanity check 2
|
||||
if or_df['chromosome_number'].isin(genomic_pos_df['chr_pos']).sum() == len(or_df):
|
||||
print('PASS: all genomic locs in or_df have meta datain info.txt')
|
||||
else:
|
||||
print('FAIL: some genomic locs or_df chr number DO NOT have meta data in snp_info.txt')
|
||||
|
||||
#%% Perform merge
|
||||
|
||||
#join_type = 'inner'
|
||||
#join_type = 'outer'
|
||||
join_type = 'left'
|
||||
#join_type = 'right'
|
||||
|
||||
#dfm1 = pd.merge(or_df, info_df, on ='chromosome_number', how = join_type, indicator = True) # not unique!
|
||||
dfm1 = pd.merge(or_df, info_df, on = ['chromosome_number', 'ref_allele', 'alt_allele'], how = join_type, indicator = True)
|
||||
dfm1['_merge'].value_counts()
|
||||
|
||||
# count no. of missense mutations ONLY
|
||||
dfm1.snp_info.str.count(r'(missense.*)').sum()
|
||||
|
||||
dfm2 = pd.merge(or_df, info_df2, on = ['chromosome_number', 'ref_allele', 'alt_allele'], how = join_type, indicator = True)
|
||||
dfm2['_merge'].value_counts()
|
||||
|
||||
# count no. of nan
|
||||
dfm2['mut_type'].isna().sum()
|
||||
|
||||
# drop nan
|
||||
dfm2_mis = dfm2[dfm2['mut_type'].notnull()]
|
||||
|
||||
#%% sanity check
|
||||
# count no. of missense muts
|
||||
if len(dfm1) - dfm1.snp_info.str.count(r'(missense.*)').sum() == dfm2['mut_type'].isna().sum():
|
||||
print('PASSED: numbers cross checked'
|
||||
, '\nTotal no. of missense mutations:', dfm1.snp_info.str.count(r'(missense.*)').sum()
|
||||
, '\nNo. of mutations falsely assumed to be missense:', len(dfm1) - dfm1.snp_info.str.count(r'(missense.*)').sum())
|
||||
|
||||
# two ways to filter to get only missense muts
|
||||
test = dfm1[dfm1['snp_info'].str.count('missense.*')>0]
|
||||
dfm1_mis = dfm1[dfm1['snp_info'].str.match('(missense.*)') == True]
|
||||
test.equals(dfm1_mis)
|
||||
|
||||
# drop nan
|
||||
dfm2_mis = dfm2[dfm2['mut_type'].notnull()]
|
||||
|
||||
if dfm1_mis[['chromosome_number', 'ref_allele', 'alt_allele']].equals(dfm2_mis[['chromosome_number', 'ref_allele', 'alt_allele']]):
|
||||
print('PASS: Further cross checks successful')
|
||||
else:
|
||||
print('FAIL: Second cross check unsuccessfull. Debug please!')
|
||||
sys.exit()
|
||||
|
||||
orig_len = len(dfm2_mis.columns)
|
||||
|
||||
#%% extract mut info into three cols
|
||||
dfm2_mis['wild_type'] = dfm2_mis['mut_info'].str.extract('(\w{1})>')
|
||||
dfm2_mis['position'] = dfm2_mis['mut_info'].str.extract('(\d+)')
|
||||
dfm2_mis['mutant_type'] = dfm2_mis['mut_info'].str.extract('>\d+(\w{1})')
|
||||
|
||||
dfm2_mis['mutationinformation'] = dfm2_mis['wild_type'] + dfm2_mis['position'] + dfm2_mis['mutant_type']
|
||||
|
||||
# sanity check
|
||||
ncols_add = 4
|
||||
if len(dfm2_mis.columns) == orig_len + ncols_add:
|
||||
print('PASS: Succesfully extracted and added mutationinformation(mcsm style)')
|
||||
else:
|
||||
print('FAIL: No. of cols mismatch'
|
||||
,'\noriginal length:', orig_len
|
||||
, '\nExpected no. of cols:', orig_len + ncols_add
|
||||
, '\nGot no. of cols:', len(dfm2_mis.columns))
|
||||
sys.exit()
|
||||
|
||||
|
||||
#%% write file
|
||||
print('Writing output file:\n', outfile_or_kin
|
||||
, '\nNo.of rows:', len(dfm2_mis)
|
||||
, '\nNo. of cols:', len(dfm2_mis.columns))
|
||||
dfm2_mis.to_csv(outfile_or_kin, index = False)
|
||||
|
||||
#%% diff b/w allele0 and 1: or_df
|
||||
#https://stackoverflow.com/questions/40348541/pandas-diff-with-string
|
||||
#df = or_df.iloc[[5, 15, 17, 19, 34]]
|
||||
#df[['alt_allele0','ref_allele1']].ne(df[['alt_allele0','ref_allele1']].shift()).any(axis=1).astype(int)
|
||||
#df[['alt_allele0','ref_allele1']].ne(df[['alt_allele0','ref_allele1']].shift()).any(axis=1).astype(int)
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue