renamed files & added or kinship link file
This commit is contained in:
parent
c36197d75e
commit
07258120de
3 changed files with 646 additions and 0 deletions
385
scripts/af_or_calcs_scratch.R
Normal file
385
scripts/af_or_calcs_scratch.R
Normal file
|
@ -0,0 +1,385 @@
|
|||
#########################################################
|
||||
# TASK: To compare OR from master data
|
||||
# chisq, fisher test and logistic and adjusted logistic
|
||||
#########################################################
|
||||
getwd()
|
||||
setwd('~/git/LSHTM_analysis/scripts')
|
||||
getwd()
|
||||
|
||||
#install.packages("logistf")
|
||||
library(logistf)
|
||||
#########################################################
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = paste0(gene,'_p.')
|
||||
cat(gene_match)
|
||||
|
||||
#===========
|
||||
# input and output dirs
|
||||
#===========
|
||||
datadir = paste0('~/git/Data')
|
||||
indir = paste0(datadir, '/', drug, '/', 'input')
|
||||
outdir = paste0(datadir, '/', drug, '/', 'output')
|
||||
|
||||
#===========
|
||||
# input and output files
|
||||
#===========
|
||||
in_filename = 'original_tanushree_data_v2.csv'
|
||||
#in_filename = 'mtb_gwas_v3.csv'
|
||||
infile = paste0(datadir, '/', in_filename)
|
||||
cat(paste0('Reading infile1: raw data', ' ', infile) )
|
||||
|
||||
# infile2: _gene associated meta data file to extract valid snps and add calcs to.
|
||||
# This is outfile3 from data_extraction.py
|
||||
in_filename_metadata = paste0(tolower(gene), '_metadata.csv')
|
||||
infile_metadata = paste0(outdir, '/', in_filename_metadata)
|
||||
cat(paste0('Reading infile2: gene associated metadata:', infile_metadata))
|
||||
|
||||
#===========
|
||||
# output
|
||||
#===========
|
||||
out_filename = paste0(tolower(gene),'_', 'meta_data_with_AF_OR.csv')
|
||||
outfile = paste0(outdir, '/', out_filename)
|
||||
cat(paste0('Output file with full path:', outfile))
|
||||
#%% end of variable assignment for input and output files
|
||||
|
||||
#########################################################
|
||||
# 1: Read master/raw data stored in Data/
|
||||
#####################################################
|
||||
|
||||
#===============
|
||||
# Step 1: read raw data (all remove entries with NA in pza column)
|
||||
#===============
|
||||
raw_data_all = read.csv(infile, stringsAsFactors = F)
|
||||
|
||||
# building cols to extract
|
||||
dr_muts_col = paste0('dr_mutations_', drug)
|
||||
other_muts_col = paste0('other_mutations_', drug)
|
||||
|
||||
cat('Extracting columns based on variables:\n'
|
||||
, drug
|
||||
, '\n'
|
||||
, dr_muts_col
|
||||
, '\n'
|
||||
, other_muts_col
|
||||
, '\n===============================================================')
|
||||
|
||||
raw_data = raw_data_all[,c("id"
|
||||
, drug
|
||||
, dr_muts_col
|
||||
, other_muts_col)]
|
||||
rm(raw_data_all)
|
||||
|
||||
rm(indir, in_filename, infile)
|
||||
|
||||
#===========
|
||||
# 1a: exclude na
|
||||
#===========
|
||||
raw_data = raw_data[!is.na(raw_data[[drug]]),]
|
||||
|
||||
total_samples = length(unique(raw_data$id))
|
||||
cat(paste0('Total samples without NA in', ' ', drug, 'is:', total_samples))
|
||||
|
||||
# sanity check: should be true
|
||||
is.numeric(total_samples)
|
||||
|
||||
#===========
|
||||
# 1b: combine the two mutation columns
|
||||
#===========
|
||||
#raw_data$all_mutations_pyrazinamide = paste(raw_data$dr_mutations_pyrazinamide, raw_data$other_mutations_pyrazinamide)
|
||||
|
||||
all_muts_colname = paste0('all_mutations_', drug)
|
||||
raw_data[[all_muts_colname]] = paste(raw_data[[dr_muts_col]], raw_data[[other_muts_col]])
|
||||
head(raw_data[[all_muts_colname]])
|
||||
|
||||
#===========
|
||||
# 1c: create yet another column that contains all the mutations but in lower case
|
||||
#===========
|
||||
head(raw_data[[all_muts_colname]])
|
||||
raw_data$all_muts_gene = tolower(raw_data[[all_muts_colname]])
|
||||
head(raw_data$all_muts_gene)
|
||||
|
||||
# sanity checks
|
||||
#table(grepl("gene_p",raw_data$all_muts_gene))
|
||||
cat(paste0('converting gene match:', gene_match, ' ', 'to lowercase'))
|
||||
gene_match = tolower(gene_match)
|
||||
|
||||
table(grepl(gene_match,raw_data$all_muts_gene))
|
||||
|
||||
# sanity check
|
||||
if(sum(table(grepl(gene_match, raw_data$all_muts_gene))) == total_samples){
|
||||
cat('PASS: Total no. of samples match')
|
||||
} else{
|
||||
cat('FAIL: No. of samples mismatch')
|
||||
}
|
||||
|
||||
#########################################################
|
||||
# 2: Read valid snps for which OR
|
||||
# can be calculated
|
||||
#########################################################
|
||||
cat(paste0('Reading metadata infile:', infile_metadata))
|
||||
|
||||
gene_metadata = read.csv(infile_metadata
|
||||
#, file.choose()
|
||||
, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
|
||||
# clear variables
|
||||
rm(in_filename_metadata, infile_metadata)
|
||||
|
||||
# count na in pyrazinamide column
|
||||
tot_pza_na = sum(is.na(gene_metadata$pyrazinamide))
|
||||
expected_rows = nrow(gene_metadata) - tot_pza_na
|
||||
|
||||
# drop na from the pyrazinamide colum
|
||||
gene_snps_or = gene_metadata[!is.na(gene_metadata[[drug]]),]
|
||||
|
||||
# sanity check
|
||||
if(nrow(gene_snps_or) == expected_rows){
|
||||
cat('PASS: no. of rows match with expected_rows')
|
||||
} else{
|
||||
cat('FAIL: nrows mismatch.')
|
||||
}
|
||||
|
||||
# extract unique snps to iterate over for AF and OR calcs
|
||||
gene_snps_unique = unique(gene_snps_or$mutation)
|
||||
|
||||
cat(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(gene_snps_unique)))
|
||||
|
||||
#=====================================
|
||||
#OR calcs using the following 4
|
||||
#1) chisq.test
|
||||
#2) fisher
|
||||
#3) modified chisq.test
|
||||
#4) logistic
|
||||
#5) adjusted logistic?
|
||||
#6) kinship (separate script)
|
||||
|
||||
#======================================
|
||||
|
||||
################# modified chisq OR
|
||||
# Define OR function
|
||||
#x = as.numeric(mut)
|
||||
#y = dst
|
||||
my_chisq_or = function(x,y){
|
||||
tab = as.matrix(table(x,y))
|
||||
a = tab[2,2]
|
||||
if (a==0){ a<-0.5}
|
||||
b = tab[2,1]
|
||||
if (b==0){ b<-0.5}
|
||||
c = tab[1,2]
|
||||
if (c==0){ c<-0.5}
|
||||
d = tab[1,1]
|
||||
if (d==0){ d<-0.5}
|
||||
(a/b)/(c/d)
|
||||
|
||||
}
|
||||
|
||||
#========================
|
||||
# TEST WITH ONE
|
||||
|
||||
i = "pnca_p.trp68gly"
|
||||
i = "pnca_p.gln10pro"
|
||||
i = "pnca_p.leu159arg"
|
||||
|
||||
# IV
|
||||
table(grepl(i,raw_data$all_muts_gene))
|
||||
mut = grepl(i,raw_data$all_muts_gene)
|
||||
|
||||
# DV
|
||||
#dst = raw_data$pyrazinamide
|
||||
dst = raw_data[[drug]] # or raw_data[,drug]
|
||||
|
||||
# 2X2 table
|
||||
table(mut, dst)
|
||||
|
||||
# CV
|
||||
#c = raw_data$id[mut]
|
||||
c = raw_data$id[grepl(i,raw_data$all_muts_gene)]
|
||||
#sid = grepl(raw_data$id[mut], raw_data$id) # warning
|
||||
#argument 'pattern' has length > 1 and only the first element will be used
|
||||
#grepl(raw_data$id=="ERR2512440", raw_data$id)
|
||||
|
||||
sid = grepl(paste(c,collapse="|"), raw_data$id)
|
||||
table(sid)
|
||||
|
||||
# 3X2 table
|
||||
table(mut, dst, sid)
|
||||
|
||||
#============================
|
||||
# compare OR
|
||||
chisq.test(table(mut,dst))
|
||||
fisher.test(table(mut, dst))
|
||||
fisher.test(table(mut, dst))$p.value
|
||||
fisher.test(table(mut, dst))$estimate
|
||||
my_chisq_or(mut,dst)
|
||||
|
||||
# logistic or
|
||||
summary(model<-glm(dst ~ mut, family = binomial))
|
||||
or_logistic = exp(summary(model)$coefficients[2,1]); print(or_logistic)
|
||||
pval_logistic = summary(model)$coefficients[2,4]; print(pval_logistic)
|
||||
|
||||
# adjusted logistic or
|
||||
summary(model2<-glm(dst ~ mut + sid, family = binomial))
|
||||
or_logistic2 = exp(summary(model2)$coefficients[2,1]); print(or_logistic2)
|
||||
pval_logistic2 = summary(model2)$coefficients[2,4]; print(pval_logistic2)
|
||||
|
||||
#=========================
|
||||
|
||||
ors = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
my_chisq_or(mut,dst)
|
||||
})
|
||||
|
||||
ors
|
||||
|
||||
pvals = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
fisher.test(mut,dst)$p.value
|
||||
})
|
||||
|
||||
pvals
|
||||
|
||||
afs = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
mean(mut)
|
||||
})
|
||||
|
||||
afs
|
||||
|
||||
# logistic
|
||||
logistic_ors = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
model<-glm(dst ~ mut, family = binomial)
|
||||
or_logistic = exp(summary(model)$coefficients[2,1])
|
||||
#pval_logistic = summary(model)$coefficients[2,4]
|
||||
})
|
||||
logistic_ors
|
||||
|
||||
|
||||
# logistic adj # Doesn't seem to make a difference
|
||||
logistic_ors2 = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
c = raw_data$id[mut]
|
||||
sid = grepl(paste(c,collapse="|"), raw_data$id)
|
||||
model2<-glm(dst ~ mut + sid, family = binomial)
|
||||
or_logistic2 = exp(summary(model2)$coefficients[2,1])
|
||||
#pval_logistic2 = summary(model2)$coefficients[2,4]
|
||||
})
|
||||
|
||||
logistic_ors2
|
||||
|
||||
or_logistic2; pval_logistic2
|
||||
|
||||
|
||||
head(logistic_ors)
|
||||
#====================================
|
||||
|
||||
# logistic
|
||||
summary(model<-glm(dst ~ mut
|
||||
, family = binomial
|
||||
#, control = glm.control(maxit = 1)
|
||||
#, options(warn = 1)
|
||||
))
|
||||
or_logistic_maxit = exp(summary(model)$coefficients[2,1]); print(or_logistic_maxit)
|
||||
pval_logistic_maxit = summary(model)$coefficients[2,4]; print(pval_logistic_maxit)
|
||||
|
||||
|
||||
#####################
|
||||
# iterate: subset
|
||||
#####################
|
||||
|
||||
snps_test = c("pnca_p.trp68gly", "pnca_p.leu4ser", "pnca_p.leu159arg","pnca_p.his57arg" )
|
||||
|
||||
data = snps_test[1:2]
|
||||
|
||||
data
|
||||
|
||||
|
||||
|
||||
|
||||
################# start loop
|
||||
for (i in data){
|
||||
|
||||
print(i)
|
||||
|
||||
# IV
|
||||
#mut<-as.numeric(grepl(i,raw_data$all_muts_gene))
|
||||
mut = grepl(i,raw_data$all_muts_gene)
|
||||
table(mut)
|
||||
|
||||
# DV
|
||||
#dst<-as.numeric(raw_data[[drug]])
|
||||
dst = raw_data[[drug]]
|
||||
|
||||
# table
|
||||
print(table(dst, mut))
|
||||
|
||||
|
||||
#=====================
|
||||
# logistic regression, glm.control(maxit = n)
|
||||
#https://stats.stackexchange.com/questions/11109/how-to-deal-with-perfect-separation-in-logistic-regression
|
||||
#=====================
|
||||
#n = 1
|
||||
summary(model<-glm(dst ~ mut
|
||||
, family = binomial
|
||||
#, control = glm.control(maxit = 1)
|
||||
#, options(warn = 1)
|
||||
))
|
||||
or_logistic_maxit = exp(summary(model)$coefficients[2,1]); print(or_logistic_maxit)
|
||||
pval_logistic_maxit = summary(model)$coefficients[2,4]; print(pval_logistic_maxit)
|
||||
|
||||
#=====================
|
||||
# fishers test
|
||||
#=====================
|
||||
#attributes(fisher.test(table(dst, mut)))
|
||||
or_fisher = fisher.test(table(dst, mut))$estimate
|
||||
or_fisher = or_fisher[[1]]; or_fisher
|
||||
|
||||
pval_fisher = fisher.test(table(dst, mut))$p.value ; pval_fisher
|
||||
|
||||
#=====================
|
||||
# chi square
|
||||
#=====================
|
||||
#chisq.test(y = dst, x = mut)
|
||||
#attributes(chisq.test(table(dst, mut)))
|
||||
est_chisq = chisq.test(table(dst, mut))$statistic
|
||||
est_chisq = est_chisq[[1]]; est_chisq
|
||||
|
||||
pval_chisq = chisq.test(table(dst, mut))$p.value; pval_chisq
|
||||
|
||||
# all output
|
||||
writeLines(c(paste0("mutation:", i)
|
||||
, paste0("=========================")
|
||||
, paste0("OR_logistic_maxit:", or_logistic_maxit,"--->", "P-val_logistic_maxit:", pval_logistic_maxit )
|
||||
, paste0("OR_fisher:", or_fisher, "--->","P-val_fisher:", pval_fisher )
|
||||
, paste0("Chi_sq_estimate:", est_chisq, "--->","P-val_chisq:", pval_chisq)))
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
i = "gene_p.leu159arg"
|
||||
|
||||
mut<-as.numeric(grepl(i,raw_data$all_muts_pza))
|
||||
# DV
|
||||
dst<-as.numeric(raw_data$pyrazinamide)
|
||||
# tablehttps://mail.google.com/mail/?tab=rm&ogbl
|
||||
table(dst, mut)
|
||||
|
||||
#=====================
|
||||
# fishers test
|
||||
#=====================
|
||||
#attributes(fisher.test(table(dst, mut)))
|
||||
or_fisher = fisher.test(table(dst, mut))$estimate
|
||||
or_fisher = or_fisher[[1]]; or_fisher
|
||||
|
||||
pval_fisher = fisher.test(table(dst, mut))$p.value ; pval_fisher
|
||||
|
||||
|
||||
# https://stats.stackexchange.com/questions/259635/what-is-the-difference-using-a-fishers-exact-test-vs-a-logistic-regression-for
|
||||
exact2x2(table(dst, mut),tsmethod="central")
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue