From 06e53631125f378bfcdbab38c14108e6346fece8 Mon Sep 17 00:00:00 2001 From: Tanushree Tunstall Date: Sun, 31 Jul 2022 16:29:47 +0100 Subject: [PATCH] added scriptaa mcsm_mean_stability_ensemble.R to get ensemble of averages across predictors for stability and affinity --- .../plotting/mcsm_mean_stability_ensemble.R | 280 ++++++++++++++++++ 1 file changed, 280 insertions(+) create mode 100644 scripts/plotting/mcsm_mean_stability_ensemble.R diff --git a/scripts/plotting/mcsm_mean_stability_ensemble.R b/scripts/plotting/mcsm_mean_stability_ensemble.R new file mode 100644 index 0000000..9bc1be7 --- /dev/null +++ b/scripts/plotting/mcsm_mean_stability_ensemble.R @@ -0,0 +1,280 @@ +source("~/git/LSHTM_analysis/config/pnca.R") + +source("/home/tanu/git/LSHTM_analysis/my_header.R") +######################################################### +# TASK: Generate averaged stability values +# across all stability tools +# for a given structure +######################################################### + +#======= +# output +#======= +outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene)) + +outfile_mean_ens_st_aff = paste0(outdir_images, "/", tolower(gene) + , "_mean_ens_stab_aff.csv") + +print(paste0("Output file:", outfile_mean_ens_st_aff)) + +#%%=============================================================== + +#============= +# Input +#============= +df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv") +df3 = read.csv(df3_filename) + +# mut_info checks +table(df3$mutation_info) +table(df3$mutation_info_orig) +table(df3$mutation_info_labels_orig) + +# used in plots and analyses +table(df3$mutation_info_labels) # different, and matches dst_mode +table(df3$dst_mode) + +# create column based on dst mode with different colname +table(is.na(df3$dst)) +table(is.na(df3$dst_mode)) + +#=============== +# Create column: sensitivity mapped to dst_mode +#=============== +df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S") +table(df3$sensitivity) + +length(unique((df3$mutationinformation))) +all_colnames = as.data.frame(colnames(df3)) +common_cols = c("mutationinformation" + , "position" + , "dst_mode" + #, "mutation_info_labels" + , "sensitivity" + , "ligand_distance") + +# ADD the ones for mcsm_na etc +#optional_cols = c() + +all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)] +#TODO: affinity_cols +scaled_cols = c("duet_scaled" , "duet_stability_change" + ,"deepddg_scaled" , "deepddg" + ,"ddg_dynamut2_scaled" , "ddg_dynamut2" + ,"foldx_scaled" , "ddg_foldx" + + #,"consurf_scaled" , "consurf_score" + #,"snap2_scaled" , "snap2_score" + #,"provean_scaled" , "provean_score" + #,"affinity_scaled" , "ligand_affinity_change" + #,"mmcsm_lig_scaled" , "mmcsm_lig" + ) +all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)] +outcome_cols = c("duet_outcome" + , "deepddg_outcome" + , "ddg_dynamut2_outcome" + , "foldx_outcome" + #, "ddg_foldx", "foldx_scaled" + + # consurf outcome doesn't exist + #,"provean_outcome" + #,"snap2_outcome" + #,"ligand_outcome" + #,"mmcsm_lig_outcome" + ) +outcome_cols_affinity = c("ligand_outcome" + ,"mmcsm_lig_outcome") + +cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols, scaled_cols, outcome_cols, outcome_cols_affinity)] +cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols, outcome_cols)] + +foo = df3[, cols_to_consider] +df3_plot_orig = df3[, cols_to_extract] + +############################################################## +##################### +# Ensemble stability +##################### +# extract outcome cols and map numeric values to the categories +# Destabilising == 1, and stabilising == 0 +df3_plot = df3[, cols_to_extract] + +df3_plot[, outcome_cols] <- sapply(df3_plot[, outcome_cols] + , function(x){ifelse(x == "Destabilising", 1, 0)}) + +#===================================== +# Stability (4 cols): average the scores +# across predictors ==> average by +# position ==> scale b/w -1 and 1 + +# column to average: ens_stability +#===================================== +cols_to_average = which(colnames(df3_plot)%in%outcome_cols) + +# ensemble average across predictors +df3_plot$ens_stability = rowMeans(df3_plot[,cols_to_average]) + +head(df3_plot$position); head(df3_plot$mutationinformation) +head(df3_plot$ens_stability) +table(df3_plot$ens_stability) + +# ensemble average of predictors by position +mean_ens_stability_by_position <- df3_plot %>% + dplyr::group_by(position) %>% + dplyr::summarize(avg_ens_stability = mean(ens_stability)) + +# REscale b/w -1 and 1 +#en_stab_min = min(mean_ens_stability_by_position['avg_ens_stability']) +#en_stab_max = max(mean_ens_stability_by_position['avg_ens_stability']) + +# scale the average stability value between -1 and 1 +# mean_ens_by_position['averaged_stability3_scaled'] = lapply(mean_ens_by_position['averaged_stability3'] +# , function(x) ifelse(x < 0, x/abs(en3_min), x/en3_max)) + +mean_ens_stability_by_position['avg_ens_stability_scaled'] = lapply(mean_ens_stability_by_position['avg_ens_stability'] + , function(x) { + scales::rescale(x, to = c(-1,1) + #, from = c(en_stab_min,en_stab_max)) + , from = c(0,1)) + }) +cat(paste0('Average stability scores:\n' + , head(mean_ens_stability_by_position['avg_ens_stability']) + , '\n---------------------------------------------------------------' + , '\nAverage stability scaled scores:\n' + , head(mean_ens_stability_by_position['avg_ens_stability_scaled']))) + +# convert to a data frame +mean_ens_stability_by_position = as.data.frame(mean_ens_stability_by_position) + +#FIXME: sanity checks +# TODO: predetermine the bounds +# l_bound_ens = min(mean_ens_stability_by_position['avg_ens_stability_scaled']) +# u_bound_ens = max(mean_ens_stability_by_position['avg_ens_stability_scaled']) +# +# if ( (l_bound_ens == -1) && (u_bound_ens == 1) ){ +# cat(paste0("PASS: ensemble stability scores averaged by position and then scaled" +# , "\nmin ensemble averaged stability: ", l_bound_ens +# , "\nmax ensemble averaged stability: ", u_bound_ens)) +# }else{ +# cat(paste0("FAIL: avergaed duet scores could not be scaled b/w -1 and 1" +# , "\nmin ensemble averaged stability: ", l_bound_ens +# , "\nmax ensemble averaged stability: ", u_bound_ens)) +# quit() +# } +################################################################## +############################ +# Ensemble affinity: ligand +############################ +# extract ligand affinity outcome cols and map numeric values to the categories +# Destabilising == 1, and stabilising == 0 +cols_to_extract_affinity = cols_to_consider[cols_to_consider%in%c(common_cols + , outcome_cols_affinity)] + + +df3_plot_affinity = df3[, cols_to_extract_affinity] +names(df3_plot_affinity) + +df3_plot_affinity[, outcome_cols_affinity] <- sapply(df3_plot_affinity[, outcome_cols_affinity] + , function(x){ifelse(x == "Destabilising", 1, 0)}) + +#===================================== +# Affintiy (2 cols): average the scores +# across predictors ==> average by +# position ==> scale b/w -1 and 1 + +# column to average: ens_affinity +#===================================== +cols_to_average_affinity = which(colnames(df3_plot_affinity)%in%outcome_cols_affinity) +cols_to_average_affinity + +# ensemble average across predictors +df3_plot_affinity$ens_affinity = rowMeans(df3_plot_affinity[,cols_to_average_affinity]) + +head(df3_plot_affinity$position); head(df3_plot_affinity$mutationinformation) +head(df3_plot_affinity$ens_affinity) +table(df3_plot_affinity$ens_affinity) + +# ensemble average of predictors by position +mean_ens_affinity_by_position <- df3_plot_affinity %>% + dplyr::group_by(position) %>% + dplyr::summarize(avg_ens_affinity = mean(ens_affinity)) + +# REscale b/w -1 and 1 +#en_aff_min = min(mean_ens_affinity_by_position['ens_affinity']) +#en_aff_max = max(mean_ens_affinity_by_position['ens_affinity']) + +# scale the average affintiy value between -1 and 1 +# mean_ens_affinity_by_position['avg_ens_affinity_scaled'] = lapply(mean_ens_affinity_by_position['avg_ens_affinity'] +# , function(x) ifelse(x < 0, x/abs(en_aff_min), x/en_aff_max)) + + +mean_ens_affinity_by_position['avg_ens_affinity_scaled'] = lapply(mean_ens_affinity_by_position['avg_ens_affinity'] + , function(x) { + scales::rescale(x, to = c(-1,1) + #, from = c(en_aff_min,en_aff_max)) + , from = c(0,1)) + }) +cat(paste0('Average affintiy scores:\n' + , head(mean_ens_affinity_by_position['avg_ens_affinity']) + , '\n---------------------------------------------------------------' + , '\nAverage affintiy scaled scores:\n' + , head(mean_ens_affinity_by_position['avg_ens_affinity_scaled']))) + +#convert to a df +mean_ens_affinity_by_position = as.data.frame(mean_ens_affinity_by_position) + + +#FIXME: sanity checks +# TODO: predetermine the bounds +# l_bound_ens_aff = min(mean_ens_affintiy_by_position['avg_ens_affinity_scaled']) +# u_bound_ens_aff = max(mean_ens_affintiy_by_position['avg_ens_affinity_scaled']) +# +# if ( (l_bound_ens_aff == -1) && (u_bound_ens_aff == 1) ){ +# cat(paste0("PASS: ensemble affinity scores averaged by position and then scaled" +# , "\nmin ensemble averaged affinity: ", l_bound_ens_aff +# , "\nmax ensemble averaged affinity: ", u_bound_ens_aff)) +# }else{ +# cat(paste0("FAIL: ensemble affinity scores could not be scaled b/w -1 and 1" +# , "\nmin ensemble averaged affinity: ", l_bound_ens_aff +# , "\nmax ensemble averaged affinity: ", u_bound_ens_aff)) +# quit() +# } + + +###################################################################### +################## +# merge: mean ensemble stability and affinity by_position +#################### +# if ( class(mean_ens_stability_by_position) && class(mean_ens_affinity_by_position) != "data.frame"){ +# cat("Y") +# } + +common_cols = intersect(colnames(mean_ens_stability_by_position), colnames(mean_ens_affinity_by_position)) + +if (dim(mean_ens_stability_by_position) && dim(mean_ens_affinity_by_position)){ + print(paste0("PASS: dim's match, mering dfs by column :", common_cols)) + #combined = as.data.frame(cbind(mean_duet_by_position, mean_affinity_by_position )) + combined_df = as.data.frame(merge(mean_ens_stability_by_position + , mean_ens_affinity_by_position + , by = common_cols + , all = T)) + + cat(paste0("\nnrows combined_df:", nrow(combined_df) + , "\nnrows combined_df:", ncol(combined_df))) +}else{ + cat(paste0("FAIL: dim's mismatch, aborting cbind!" + , "\nnrows df1:", nrow(mean_duet_by_position) + , "\nnrows df2:", nrow(mean_affinity_by_position))) + quit() +} +#%%============================================================ +# output +write.csv(combined_df, outfile_mean_ens_st_aff + , row.names = F) +cat("Finished writing file:\n" + , outfile_mean_ens_st_aff + , "\nNo. of rows:", nrow(combined_df) + , "\nNo. of cols:", ncol(combined_df)) + +# end of script +#===============================================================