added aa_index data for running ml
This commit is contained in:
parent
39ccd6cdf4
commit
05dd9698c4
1 changed files with 226 additions and 49 deletions
275
scripts/ml/ml_data.py
Executable file → Normal file
275
scripts/ml/ml_data.py
Executable file → Normal file
|
@ -29,15 +29,15 @@ def setvars(gene,drug):
|
||||||
|
|
||||||
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
||||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
||||||
|
|
||||||
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
||||||
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
||||||
|
|
||||||
from sklearn.pipeline import Pipeline, make_pipeline
|
from sklearn.pipeline import Pipeline, make_pipeline
|
||||||
#%% GLOBALS
|
#%% GLOBALS
|
||||||
rs = {'random_state': 42}
|
rs = {'random_state': 42}
|
||||||
njobs = {'n_jobs': 10}
|
njobs = {'n_jobs': 10}
|
||||||
|
|
||||||
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
||||||
, 'accuracy' : make_scorer(accuracy_score)
|
, 'accuracy' : make_scorer(accuracy_score)
|
||||||
, 'fscore' : make_scorer(f1_score)
|
, 'fscore' : make_scorer(f1_score)
|
||||||
|
@ -50,21 +50,30 @@ def setvars(gene,drug):
|
||||||
skf_cv = StratifiedKFold(n_splits = 10
|
skf_cv = StratifiedKFold(n_splits = 10
|
||||||
#, shuffle = False, random_state= None)
|
#, shuffle = False, random_state= None)
|
||||||
, shuffle = True,**rs)
|
, shuffle = True,**rs)
|
||||||
|
|
||||||
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
||||||
, n_repeats = 3
|
, n_repeats = 3
|
||||||
, **rs)
|
, **rs)
|
||||||
|
|
||||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||||
|
|
||||||
#%% FOR LATER: Combine ED logo data
|
#%% FOR LATER: Combine ED logo data
|
||||||
#%% FOR LATER: active aa site annotations **DONE on 15/05/2022 as part of generating merged_dfs
|
#%% DONE: active aa site annotations **DONE on 15/05/2022 as part of generating merged_dfs
|
||||||
###########################################################################
|
###########################################################################
|
||||||
rs = {'random_state': 42}
|
rs = {'random_state': 42}
|
||||||
njobs = {'n_jobs': 10}
|
njobs = {'n_jobs': 10}
|
||||||
homedir = os.path.expanduser("~")
|
homedir = os.path.expanduser("~")
|
||||||
|
|
||||||
|
geneL_basic = ['pnca']
|
||||||
|
geneL_na = ['gid']
|
||||||
|
geneL_na_ppi2 = ['rpob']
|
||||||
|
geneL_ppi2 = ['alr', 'embb', 'katg']
|
||||||
|
|
||||||
|
#num_type = ['int64', 'float64']
|
||||||
|
num_type = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
|
||||||
|
cat_type = ['object', 'bool']
|
||||||
|
|
||||||
#==============
|
#==============
|
||||||
# directories
|
# directories
|
||||||
#==============
|
#==============
|
||||||
|
@ -75,41 +84,175 @@ def setvars(gene,drug):
|
||||||
#=======
|
#=======
|
||||||
# input
|
# input
|
||||||
#=======
|
#=======
|
||||||
|
|
||||||
|
#---------
|
||||||
|
# File 1
|
||||||
|
#---------
|
||||||
infile_ml1 = outdir + gene.lower() + '_merged_df3.csv'
|
infile_ml1 = outdir + gene.lower() + '_merged_df3.csv'
|
||||||
#infile_ml2 = outdir + gene.lower() + '_merged_df2.csv'
|
#infile_ml2 = outdir + gene.lower() + '_merged_df2.csv'
|
||||||
|
|
||||||
my_df = pd.read_csv(infile_ml1, index_col = 0)
|
my_features_df = pd.read_csv(infile_ml1, index_col = 0)
|
||||||
my_df.dtypes
|
my_features_df = my_features_df .reset_index(drop = True)
|
||||||
my_df_cols = my_df.columns
|
my_features_df.index
|
||||||
|
|
||||||
geneL_basic = ['pnca']
|
my_features_df.dtypes
|
||||||
geneL_na = ['gid']
|
mycols = my_features_df.columns
|
||||||
geneL_na_ppi2 = ['rpob']
|
|
||||||
geneL_ppi2 = ['alr', 'embb', 'katg']
|
|
||||||
#%% get cols
|
|
||||||
mycols = my_df.columns
|
|
||||||
|
|
||||||
# # change from numberic to
|
#---------
|
||||||
# num_type = ['int64', 'float64']
|
# File 2
|
||||||
# cat_type = ['object', 'bool']
|
#---------
|
||||||
|
infile_aaindex = outdir + 'aa_index/' + gene.lower() + '_aa.csv'
|
||||||
|
aaindex_df = pd.read_csv(infile_aaindex, index_col = 0)
|
||||||
|
aaindex_df.dtypes
|
||||||
|
|
||||||
# if my_df['active_aa_pos'].dtype in num_type:
|
#-----------
|
||||||
# my_df['active_aa_pos'] = my_df['active_aa_pos'].astype(object)
|
# check for non-numerical columns
|
||||||
# my_df['active_aa_pos'].dtype
|
#-----------
|
||||||
|
if any(aaindex_df.dtypes==object):
|
||||||
|
print('\naaindex_df contains non-numerical data')
|
||||||
|
|
||||||
# FIXME: if this is not structural, remove from source..
|
aaindex_df_object = aaindex_df.select_dtypes(include = cat_type)
|
||||||
|
print('\nTotal no. of non-numerial columns:', len(aaindex_df_object.columns))
|
||||||
|
|
||||||
|
expected_aa_ncols = len(aaindex_df.columns) - len(aaindex_df_object.columns)
|
||||||
|
|
||||||
|
#-----------
|
||||||
|
# Extract numerical data only
|
||||||
|
#-----------
|
||||||
|
print('\nSelecting numerical data only')
|
||||||
|
aaindex_df = aaindex_df.select_dtypes(include = num_type)
|
||||||
|
|
||||||
|
#---------------------------
|
||||||
|
# aaindex: sanity check 1
|
||||||
|
#---------------------------
|
||||||
|
if len(aaindex_df.columns) == expected_aa_ncols:
|
||||||
|
print('\nPASS: successfully selected numerical columns only for aaindex_df')
|
||||||
|
else:
|
||||||
|
print('\nFAIL: Numbers mismatch'
|
||||||
|
, '\nExpected ncols:', expected_aa_ncols
|
||||||
|
, '\nGot:', len(aaindex_df.columns))
|
||||||
|
|
||||||
|
#---------------
|
||||||
|
# check for NA
|
||||||
|
#---------------
|
||||||
|
print('\nNow checking for NA in the remaining aaindex_cols')
|
||||||
|
c1 = aaindex_df.isna().sum()
|
||||||
|
c2 = c1.sort_values(ascending=False)
|
||||||
|
print('\nCounting aaindex_df cols with NA'
|
||||||
|
, '\nncols with NA:', sum(c2>0), 'columns'
|
||||||
|
, '\nDropping these...'
|
||||||
|
, '\nOriginal ncols:', len(aaindex_df.columns)
|
||||||
|
)
|
||||||
|
aa_df = aaindex_df.dropna(axis=1)
|
||||||
|
|
||||||
|
print('\nRevised df ncols:', len(aa_df.columns))
|
||||||
|
|
||||||
|
c3 = aa_df.isna().sum()
|
||||||
|
c4 = c3.sort_values(ascending=False)
|
||||||
|
|
||||||
|
print('\nChecking NA in revised df...')
|
||||||
|
|
||||||
|
if sum(c4>0):
|
||||||
|
sys.exit('\nFAIL: aaindex_df still contains cols with NA, please check and drop these before proceeding...')
|
||||||
|
else:
|
||||||
|
print('\nPASS: cols with NA successfully dropped from aaindex_df'
|
||||||
|
, '\nProceeding with combining aa_df with other features_df')
|
||||||
|
|
||||||
|
#---------------------------
|
||||||
|
# aaindex: sanity check 2
|
||||||
|
#---------------------------
|
||||||
|
expected_aa_ncols2 = len(aaindex_df.columns) - sum(c2>0)
|
||||||
|
if len(aa_df.columns) == expected_aa_ncols2:
|
||||||
|
print('\nPASS: ncols match'
|
||||||
|
, '\nExpected ncols:', expected_aa_ncols2
|
||||||
|
, '\nGot:', len(aa_df.columns))
|
||||||
|
else:
|
||||||
|
print('\nFAIL: Numbers mismatch'
|
||||||
|
, '\nExpected ncols:', expected_aa_ncols2
|
||||||
|
, '\nGot:', len(aa_df.columns))
|
||||||
|
|
||||||
|
# Important: need this to identify aaindex cols
|
||||||
|
aa_df_cols = aa_df.columns
|
||||||
|
print('\nTotal no. of columns in clean aa_df:', len(aa_df_cols))
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
#%% Combining my_features_df and aaindex_df
|
||||||
|
#===========================
|
||||||
|
# Merge my_df + aaindex_df
|
||||||
|
#===========================
|
||||||
|
|
||||||
|
if aa_df.columns[aa_df.columns.isin(my_features_df.columns)] == my_features_df.columns[my_features_df.columns.isin(aa_df.columns)]:
|
||||||
|
print('\nMerging on column: mutationinformation')
|
||||||
|
|
||||||
|
if len(my_features_df) == len(aa_df):
|
||||||
|
expected_nrows = len(my_features_df)
|
||||||
|
print('\nProceeding to merge, expected nrows in merged_df:', expected_nrows)
|
||||||
|
else:
|
||||||
|
sys.exit('\nNrows mismatch, cannot merge. Please check'
|
||||||
|
, '\nnrows my_df:', len(my_features_df)
|
||||||
|
, '\nnrows aa_df:', len(aa_df))
|
||||||
|
|
||||||
|
#-----------------
|
||||||
|
# Reset index: mutationinformation
|
||||||
|
# Very important for merging
|
||||||
|
#-----------------
|
||||||
|
aa_df = aa_df.reset_index()
|
||||||
|
|
||||||
|
expected_ncols = len(my_features_df.columns) + len(aa_df.columns) - 1 # for the no. of merging col
|
||||||
|
|
||||||
|
#-----------------
|
||||||
|
# Merge: my_features_df + aa_df
|
||||||
|
#-----------------
|
||||||
|
merged_df = pd.merge(my_features_df
|
||||||
|
, aa_df
|
||||||
|
, on = 'mutationinformation')
|
||||||
|
|
||||||
|
#---------------------------
|
||||||
|
# aaindex: sanity check 3
|
||||||
|
#---------------------------
|
||||||
|
if len(merged_df.columns) == expected_ncols:
|
||||||
|
print('\nPASS: my_features_df and aa_df successfully combined'
|
||||||
|
, '\nnrows:', len(merged_df)
|
||||||
|
, '\nncols:', len(merged_df.columns))
|
||||||
|
else:
|
||||||
|
sys.exit('\nFAIL: could not combine my_features_df and aa_df'
|
||||||
|
, '\nCheck dims and merging cols!')
|
||||||
|
|
||||||
|
#--------
|
||||||
|
# Reassign so downstream code doesn't need to change
|
||||||
|
#--------
|
||||||
|
my_df = merged_df.copy()
|
||||||
|
|
||||||
|
#%% Data: my_df
|
||||||
|
# Check if non structural pos have crept in
|
||||||
|
# IDEALLY remove from source! But for rpoB do it here
|
||||||
# Drop NA where numerical cols have them
|
# Drop NA where numerical cols have them
|
||||||
if gene.lower() in geneL_na_ppi2:
|
if gene.lower() in geneL_na_ppi2:
|
||||||
#D1148 get rid of
|
#D1148 get rid of
|
||||||
na_index = my_df['mutationinformation'].index[my_df['mcsm_na_affinity'].apply(np.isnan)]
|
na_index = my_df['mutationinformation'].index[my_df['mcsm_na_affinity'].apply(np.isnan)]
|
||||||
my_df = my_df.drop(index=na_index)
|
my_df = my_df.drop(index=na_index)
|
||||||
|
|
||||||
# FIXME: either impute or remove!
|
# FIXED: complete data for all muts inc L114M, F115L, V123L, V125I, V131M
|
||||||
# for embb (L114M, F115L, V123L, V125I, V131M) delete for now
|
# if gene.lower() in ['embb']:
|
||||||
if gene.lower() in ['embb']:
|
# na_index = my_df['mutationinformation'].index[my_df['ligand_distance'].apply(np.isnan)]
|
||||||
na_index = my_df['mutationinformation'].index[my_df['ligand_distance'].apply(np.isnan)]
|
# my_df = my_df.drop(index=na_index)
|
||||||
my_df = my_df.drop(index=na_index)# RERUN embb with the 5 values now present
|
|
||||||
|
# # Sanity check for non-structural positions
|
||||||
|
# print('\nChecking for non-structural postions')
|
||||||
|
# na_index = my_df['mutationinformation'].index[my_df['ligand_distance'].apply(np.isnan)]
|
||||||
|
# if len(na_index) > 0:
|
||||||
|
# print('\nNon-structural positions detected for gene:', gene.lower()
|
||||||
|
# , '\nTotal number of these detected:', len(na_index)
|
||||||
|
# , '\These are at index:', na_index
|
||||||
|
# , '\nOriginal nrows:', len(my_df)
|
||||||
|
# , '\nDropping these...')
|
||||||
|
# my_df = my_df.drop(index=na_index)
|
||||||
|
# print('\nRevised nrows:', len(my_df))
|
||||||
|
# else:
|
||||||
|
# print('\nNo non-structural positions detected for gene:', gene.lower()
|
||||||
|
# , '\nnrows:', len(my_df))
|
||||||
|
|
||||||
|
|
||||||
###########################################################################
|
###########################################################################
|
||||||
#%% Add lineage calculation columns
|
#%% Add lineage calculation columns
|
||||||
#FIXME: Check if this can be imported from config?
|
#FIXME: Check if this can be imported from config?
|
||||||
|
@ -119,6 +262,12 @@ def setvars(gene,drug):
|
||||||
my_df['lineage_proportion'] = my_df['lineage_count_unique']/my_df['lineage_count_all']
|
my_df['lineage_proportion'] = my_df['lineage_count_unique']/my_df['lineage_count_all']
|
||||||
my_df['dist_lineage_proportion'] = my_df['lineage_count_unique']/total_mtblineage_uc
|
my_df['dist_lineage_proportion'] = my_df['lineage_count_unique']/total_mtblineage_uc
|
||||||
###########################################################################
|
###########################################################################
|
||||||
|
#%% Active site annotation column
|
||||||
|
# change from numberic to categorical
|
||||||
|
|
||||||
|
if my_df['active_site'].dtype in num_type:
|
||||||
|
my_df['active_site'] = my_df['active_site'].astype(object)
|
||||||
|
my_df['active_site'].dtype
|
||||||
#%% AA property change
|
#%% AA property change
|
||||||
#--------------------
|
#--------------------
|
||||||
# Water prop change
|
# Water prop change
|
||||||
|
@ -137,7 +286,7 @@ def setvars(gene,drug):
|
||||||
, 'hydrophilic_to_hydrophobic' : 'change'
|
, 'hydrophilic_to_hydrophobic' : 'change'
|
||||||
, 'hydrophilic_to_hydrophilic' : 'no_change'
|
, 'hydrophilic_to_hydrophilic' : 'no_change'
|
||||||
}
|
}
|
||||||
|
|
||||||
my_df['water_change'] = my_df['water_change'].map(water_prop_changeD)
|
my_df['water_change'] = my_df['water_change'].map(water_prop_changeD)
|
||||||
my_df['water_change'].value_counts()
|
my_df['water_change'].value_counts()
|
||||||
|
|
||||||
|
@ -146,7 +295,7 @@ def setvars(gene,drug):
|
||||||
#--------------------
|
#--------------------
|
||||||
my_df['polarity_change'] = my_df['wt_prop_polarity'] + str('_to_') + my_df['mut_prop_polarity']
|
my_df['polarity_change'] = my_df['wt_prop_polarity'] + str('_to_') + my_df['mut_prop_polarity']
|
||||||
my_df['polarity_change'].value_counts()
|
my_df['polarity_change'].value_counts()
|
||||||
|
|
||||||
polarity_prop_changeD = {
|
polarity_prop_changeD = {
|
||||||
'non-polar_to_non-polar' : 'no_change'
|
'non-polar_to_non-polar' : 'no_change'
|
||||||
, 'non-polar_to_neutral' : 'change'
|
, 'non-polar_to_neutral' : 'change'
|
||||||
|
@ -164,7 +313,7 @@ def setvars(gene,drug):
|
||||||
, 'basic_to_acidic' : 'change'
|
, 'basic_to_acidic' : 'change'
|
||||||
, 'basic_to_basic' : 'no_change'
|
, 'basic_to_basic' : 'no_change'
|
||||||
, 'acidic_to_basic' : 'change'}
|
, 'acidic_to_basic' : 'change'}
|
||||||
|
|
||||||
my_df['polarity_change'] = my_df['polarity_change'].map(polarity_prop_changeD)
|
my_df['polarity_change'] = my_df['polarity_change'].map(polarity_prop_changeD)
|
||||||
my_df['polarity_change'].value_counts()
|
my_df['polarity_change'].value_counts()
|
||||||
|
|
||||||
|
@ -173,7 +322,7 @@ def setvars(gene,drug):
|
||||||
#--------------------
|
#--------------------
|
||||||
my_df['electrostatics_change'] = my_df['wt_calcprop'] + str('_to_') + my_df['mut_calcprop']
|
my_df['electrostatics_change'] = my_df['wt_calcprop'] + str('_to_') + my_df['mut_calcprop']
|
||||||
my_df['electrostatics_change'].value_counts()
|
my_df['electrostatics_change'].value_counts()
|
||||||
|
|
||||||
calc_prop_changeD = {
|
calc_prop_changeD = {
|
||||||
'non-polar_to_non-polar' : 'no_change'
|
'non-polar_to_non-polar' : 'no_change'
|
||||||
, 'non-polar_to_polar' : 'change'
|
, 'non-polar_to_polar' : 'change'
|
||||||
|
@ -192,10 +341,10 @@ def setvars(gene,drug):
|
||||||
, 'neg_to_polar' : 'change'
|
, 'neg_to_polar' : 'change'
|
||||||
, 'neg_to_pos' : 'change'
|
, 'neg_to_pos' : 'change'
|
||||||
}
|
}
|
||||||
|
|
||||||
my_df['electrostatics_change'] = my_df['electrostatics_change'].map(calc_prop_changeD)
|
my_df['electrostatics_change'] = my_df['electrostatics_change'].map(calc_prop_changeD)
|
||||||
my_df['electrostatics_change'].value_counts()
|
my_df['electrostatics_change'].value_counts()
|
||||||
|
|
||||||
#--------------------
|
#--------------------
|
||||||
# Summary change: Create a combined column summarising these three cols
|
# Summary change: Create a combined column summarising these three cols
|
||||||
#--------------------
|
#--------------------
|
||||||
|
@ -208,11 +357,14 @@ def setvars(gene,drug):
|
||||||
|
|
||||||
my_df['aa_prop_change'] = my_df['aa_prop_change'].map({1:'change'
|
my_df['aa_prop_change'] = my_df['aa_prop_change'].map({1:'change'
|
||||||
, 0: 'no_change'})
|
, 0: 'no_change'})
|
||||||
|
|
||||||
my_df['aa_prop_change'].value_counts()
|
my_df['aa_prop_change'].value_counts()
|
||||||
my_df['aa_prop_change'].dtype
|
my_df['aa_prop_change'].dtype
|
||||||
|
|
||||||
#%% IMPUTE values for OR [check script for exploration: UQ_or_imputer]
|
#%% IMPUTE values for OR [check script for exploration: UQ_or_imputer]
|
||||||
|
#--------------------
|
||||||
|
# Impute OR values
|
||||||
|
#--------------------
|
||||||
#or_cols = ['or_mychisq', 'log10_or_mychisq', 'or_fisher']
|
#or_cols = ['or_mychisq', 'log10_or_mychisq', 'or_fisher']
|
||||||
sel_cols = ['mutationinformation', 'or_mychisq', 'log10_or_mychisq']
|
sel_cols = ['mutationinformation', 'or_mychisq', 'log10_or_mychisq']
|
||||||
or_cols = ['or_mychisq', 'log10_or_mychisq']
|
or_cols = ['or_mychisq', 'log10_or_mychisq']
|
||||||
|
@ -223,7 +375,7 @@ def setvars(gene,drug):
|
||||||
my_dfI = pd.DataFrame(index = my_df['mutationinformation'] )
|
my_dfI = pd.DataFrame(index = my_df['mutationinformation'] )
|
||||||
|
|
||||||
|
|
||||||
my_dfI = pd.DataFrame(KNN(n_neighbors= 5, weights="uniform").fit_transform(my_df[or_cols])
|
my_dfI = pd.DataFrame(KNN(n_neighbors=3, weights="uniform").fit_transform(my_df[or_cols])
|
||||||
, index = my_df['mutationinformation']
|
, index = my_df['mutationinformation']
|
||||||
, columns = or_cols )
|
, columns = or_cols )
|
||||||
my_dfI.columns = ['or_rawI', 'logorI']
|
my_dfI.columns = ['or_rawI', 'logorI']
|
||||||
|
@ -236,15 +388,15 @@ def setvars(gene,drug):
|
||||||
#-------------------------------------------
|
#-------------------------------------------
|
||||||
# OR df Merge: with original based on index
|
# OR df Merge: with original based on index
|
||||||
#-------------------------------------------
|
#-------------------------------------------
|
||||||
my_df['index_bm'] = my_df.index
|
#my_df['index_bm'] = my_df.index
|
||||||
mydf_imputed = pd.merge(my_df
|
mydf_imputed = pd.merge(my_df
|
||||||
, my_dfI
|
, my_dfI
|
||||||
, on = 'mutationinformation')
|
, on = 'mutationinformation')
|
||||||
mydf_imputed = mydf_imputed.set_index(['index_bm'])
|
#mydf_imputed = mydf_imputed.set_index(['index_bm'])
|
||||||
|
|
||||||
my_df['log10_or_mychisq'].isna().sum()
|
my_df['log10_or_mychisq'].isna().sum()
|
||||||
mydf_imputed['log10_or_mychisq'].isna().sum()
|
mydf_imputed['log10_or_mychisq'].isna().sum()
|
||||||
mydf_imputed['logorI'].isna().sum()
|
mydf_imputed['logorI'].isna().sum() # should be 0
|
||||||
|
|
||||||
len(my_df.columns)
|
len(my_df.columns)
|
||||||
len(mydf_imputed.columns)
|
len(mydf_imputed.columns)
|
||||||
|
@ -253,13 +405,24 @@ def setvars(gene,drug):
|
||||||
# REASSIGN my_df after imputing OR values
|
# REASSIGN my_df after imputing OR values
|
||||||
#-----------------------------------------
|
#-----------------------------------------
|
||||||
my_df = mydf_imputed.copy()
|
my_df = mydf_imputed.copy()
|
||||||
|
|
||||||
|
if my_df['logorI'].isna().sum() == 0:
|
||||||
|
print('\nPASS: OR values imputed, data ready for ML')
|
||||||
|
else:
|
||||||
|
sys.exit('\nFAIL: something went wrong, Data not ready for ML. Please check upstream!')
|
||||||
|
|
||||||
|
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||||
|
#---------------------------------------
|
||||||
|
# TODO: try other imputation like MICE
|
||||||
|
#---------------------------------------
|
||||||
|
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||||
|
|
||||||
#%%########################################################################
|
#%%########################################################################
|
||||||
#==========================
|
#==========================
|
||||||
# Data for ML
|
# Data for ML
|
||||||
#==========================
|
#==========================
|
||||||
my_df_ml = my_df.copy()
|
my_df_ml = my_df.copy()
|
||||||
|
|
||||||
#==========================
|
#==========================
|
||||||
# BLIND test set
|
# BLIND test set
|
||||||
#==========================
|
#==========================
|
||||||
|
@ -309,7 +472,7 @@ def setvars(gene,drug):
|
||||||
X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
|
X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
|
||||||
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
|
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
|
||||||
|
|
||||||
|
|
||||||
X_foldX_cols = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
|
X_foldX_cols = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
|
||||||
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
|
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
|
||||||
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
|
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
|
||||||
|
@ -347,12 +510,18 @@ def setvars(gene,drug):
|
||||||
|
|
||||||
X_genomicFN = X_genomic_mafor + X_genomic_linegae
|
X_genomicFN = X_genomic_mafor + X_genomic_linegae
|
||||||
|
|
||||||
|
X_aaindexFN = list(aa_df_cols)
|
||||||
|
|
||||||
|
print('\nTotal no. of features for aaindex:', len(X_aaindexFN))
|
||||||
|
|
||||||
#%% Construct numerical and categorical column names
|
#%% Construct numerical and categorical column names
|
||||||
# numerical feature names
|
# numerical feature names
|
||||||
# numerical_FN = common_cols_stabiltyN + foldX_cols + X_strFN + X_evolFN + X_genomicFN
|
# numerical_FN = common_cols_stabiltyN + foldX_cols + X_strFN + X_evolFN + X_genomicFN
|
||||||
|
|
||||||
numerical_FN = X_ssFN + X_evolFN + X_genomicFN
|
#numerical_FN = X_ssFN + X_evolFN + X_genomicFN
|
||||||
|
numerical_FN = X_ssFN + X_evolFN + X_genomicFN + X_aaindexFN
|
||||||
|
|
||||||
|
|
||||||
#categorical feature names
|
#categorical feature names
|
||||||
categorical_FN = ['ss_class'
|
categorical_FN = ['ss_class'
|
||||||
# , 'wt_prop_water'
|
# , 'wt_prop_water'
|
||||||
|
@ -365,9 +534,17 @@ def setvars(gene,drug):
|
||||||
, 'electrostatics_change'
|
, 'electrostatics_change'
|
||||||
, 'polarity_change'
|
, 'polarity_change'
|
||||||
, 'water_change'
|
, 'water_change'
|
||||||
, 'drtype_mode_labels' # beware then you can use it to predict
|
#, 'drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1]
|
||||||
#, 'active_aa_pos' # TODO?
|
, 'active_site'
|
||||||
|
#, 'gene_name' # will be required for the combined stuff
|
||||||
]
|
]
|
||||||
|
#----------------------------------------------
|
||||||
|
# count numerical and categorical features
|
||||||
|
#----------------------------------------------
|
||||||
|
|
||||||
|
print('\nNo. of numerical features:', len(numerical_FN)
|
||||||
|
, '\nNo. of categorical features:', len(categorical_FN))
|
||||||
|
|
||||||
###########################################################################
|
###########################################################################
|
||||||
#=======================
|
#=======================
|
||||||
# Masking columns:
|
# Masking columns:
|
||||||
|
@ -393,7 +570,7 @@ def setvars(gene,drug):
|
||||||
# write file for check
|
# write file for check
|
||||||
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
|
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
|
||||||
mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv')
|
mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv')
|
||||||
|
|
||||||
#%% extracting dfs based on numerical, categorical column names
|
#%% extracting dfs based on numerical, categorical column names
|
||||||
#----------------------------------
|
#----------------------------------
|
||||||
# WITHOUT the target var included
|
# WITHOUT the target var included
|
||||||
|
@ -437,7 +614,7 @@ def setvars(gene,drug):
|
||||||
#------
|
#------
|
||||||
y = all_df_wtgt['dst_mode'] # training data y
|
y = all_df_wtgt['dst_mode'] # training data y
|
||||||
y_bts = blind_test_df['dst_mode'] # blind data test y
|
y_bts = blind_test_df['dst_mode'] # blind data test y
|
||||||
|
|
||||||
#X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
|
#X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
|
||||||
|
|
||||||
# Quick check
|
# Quick check
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue