much development

This commit is contained in:
Tanushree Tunstall 2021-10-28 10:41:43 +01:00
parent 873fd3a121
commit 057291a561
5 changed files with 266 additions and 89 deletions

View file

@ -51,7 +51,7 @@ def format_mcsm_na_output(mcsm_na_output_tsv):
print('Assigning meaningful colnames'
, '\n=======================================================')
my_colnames_dict = {'PDB_FILE': 'pdb_file' # relevant info from this col will be extracted and the column discarded
, 'CHAIN': 'chain' # {wild_type}<position>{mutant_type}
, 'CHAIN': 'chain'
, 'WILD_RES': 'wild_type' # one letter amino acid code
, 'RES_POS': 'position' # number
, 'MUT_RES': 'mutant_type' # one letter amino acid code
@ -65,8 +65,8 @@ def format_mcsm_na_output(mcsm_na_output_tsv):
#############
# create mutationinformation column
#############
mcsm_na_data['mutationinformation'] = mcsm_na_data['wild_type'] + mcsm_na_data.position.map(str) + mcsm_na_data['mutant_type']
#mcsm_na_data['mutationinformation'] = mcsm_na_data['wild_type'] + mcsm_na_data.position.map(str) + mcsm_na_data['mutant_type']
mcsm_na_data['mutationinformation'] = mcsm_na_data.loc[:,'wild_type'] + mcsm_na_data.loc[:,'position'].astype(int).apply(str) + mcsm_na_data.loc[:,'mutant_type']
#%%=====================================================================
#############
# Create col: mcsm_na_outcome
@ -132,4 +132,3 @@ def format_mcsm_na_output(mcsm_na_output_tsv):
, 'pdb_file']]
return(mcsm_na_dataf)
#%%#####################################################################

View file

@ -34,6 +34,11 @@ Created on Tue Aug 6 12:56:03 2019
# Output: single csv of all 8 dfs combined
# useful link
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
#%% FIXME: let the script proceed even if files don't exist!
# i.e example below
# '/home/tanu/git/Data/ethambutol/output/dynamut_results/embb_complex_dynamut_norm.csv'
#=======================================================================
#%% load packages
import sys, os
@ -48,7 +53,7 @@ homedir = os.path.expanduser('~')
# set working dir
os.getcwd()
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
#os.chdir(homedir + '/git/LSHTM_analysis/scripts')
os.getcwd()
# FIXME: local imports
@ -109,46 +114,80 @@ if not outdir:
#=======
# input
#=======
#in_filename_mcsm = gene.lower() + '_complex_mcsm_norm.csv'
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm_SAM.csv' # gidb
in_filename_foldx = gene.lower() + '_foldx.csv'
in_filename_deepddg = gene.lower() + '_ni_deepddg.csv' # change to decent filename and put it in the correct dir
in_filename_dssp = gene.lower() + '_dssp.csv'
in_filename_kd = gene.lower() + '_kd.csv'
in_filename_rd = gene.lower() + '_rd.csv'
#in_filename_snpinfo = 'ns' + gene.lower() + '_snp_info_f.csv' # gwas f info
in_filename_afor = gene.lower() + '_af_or.csv'
#in_filename_afor_kin = gene.lower() + '_af_or_kinship.csv'
infilename_dynamut = gene.lower() + '_complex_dynamut_norm.csv'
infilename_dynamut2 = gene.lower() + '_complex_dynamut2_norm.csv'
infilename_mcsm_na = gene.lower() + '_complex_mcsm_na_norm.csv'
infilename_mcsm_f_snps = gene.lower() + '_mcsm_formatted_snps.csv'
gene_list_normal = ["pnca", "katg", "rpob", "alr"]
if gene.lower() == "gid":
print("\nReading mCSM file for gene:", gene)
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm_SAM.csv'
if gene.lower() == "embb":
print("\nReading mCSM file for gene:", gene)
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm1.csv'
if gene.lower() in gene_list_normal:
print("\nReading mCSM file for gene:", gene)
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm.csv'
infile_mcsm = outdir + in_filename_mcsm
infile_foldx = outdir + in_filename_foldx
infile_deepddg = outdir + in_filename_deepddg
infile_dssp = outdir + in_filename_dssp
infile_kd = outdir + in_filename_kd
infile_rd = outdir + in_filename_rd
#infile_snpinfo = outdir + in_filename_snpinfo
infile_afor = outdir + in_filename_afor
#infile_afor_kin = outdir + in_filename_afor_kin
infile_dynamut = outdir + 'dynamut_results/' + infilename_dynamut
infile_dynamut2 = outdir + 'dynamut_results/dynamut2/' + infilename_dynamut2
infile_mcsm_na = outdir + 'mcsm_na_results/' + infilename_mcsm_na
infile_mcsm_f_snps = outdir + infilename_mcsm_f_snps
# read csv
mcsm_df = pd.read_csv(infile_mcsm, sep = ',')
in_filename_foldx = gene.lower() + '_foldx.csv'
infile_foldx = outdir + in_filename_foldx
foldx_df = pd.read_csv(infile_foldx , sep = ',')
in_filename_deepddg = gene.lower() + '_ni_deepddg.csv' # change to decent filename and put it in the correct dir
infile_deepddg = outdir + in_filename_deepddg
deepddg_df = pd.read_csv(infile_deepddg, sep = ',')
in_filename_dssp = gene.lower() + '_dssp.csv'
infile_dssp = outdir + in_filename_dssp
dssp_df = pd.read_csv(infile_dssp, sep = ',')
in_filename_kd = gene.lower() + '_kd.csv'
infile_kd = outdir + in_filename_kd
kd_df = pd.read_csv(infile_kd, sep = ',')
in_filename_rd = gene.lower() + '_rd.csv'
infile_rd = outdir + in_filename_rd
rd_df = pd.read_csv(infile_rd, sep = ',')
#in_filename_snpinfo = 'ns' + gene.lower() + '_snp_info_f.csv' # gwas f info
#infile_snpinfo = outdir + in_filename_snpinfo
in_filename_afor = gene.lower() + '_af_or.csv'
infile_afor = outdir + in_filename_afor
afor_df = pd.read_csv(infile_afor, sep = ',')
dynamut_df = pd.read_csv(infile_dynamut, sep = ',')
#in_filename_afor_kin = gene.lower() + '_af_or_kinship.csv'
#infile_afor_kin = outdir + in_filename_afor_kin
infilename_dynamut2 = gene.lower() + '_dynamut2_norm.csv'
infile_dynamut2 = outdir + 'dynamut_results/dynamut2/' + infilename_dynamut2
dynamut2_df = pd.read_csv(infile_dynamut2, sep = ',')
mcsm_na_df = pd.read_csv(infile_mcsm_na, sep = ',')
#------------------------------------------------------------
# ONLY:for gene pnca and gid: End logic should pick this up!
geneL_dy_na = ["pnca", "gid"]
#if gene.lower() == "pnca" or "gid" :
if gene.lower() in geneL_dy_na :
print("\nGene:", gene.lower()
, "\nReading Dynamut and mCSM_na files")
infilename_dynamut = gene.lower() + '_dynamut_norm.csv' # gid
infile_dynamut = outdir + 'dynamut_results/' + infilename_dynamut
dynamut_df = pd.read_csv(infile_dynamut, sep = ',')
infilename_mcsm_na = gene.lower() + '_complex_mcsm_na_norm.csv' # gid
infile_mcsm_na = outdir + 'mcsm_na_results/' + infilename_mcsm_na
mcsm_na_df = pd.read_csv(infile_mcsm_na, sep = ',')
# ONLY:for gene embb and alr: End logic should pick this up!
geneL_ppi2 = ["embb", "alr"]
#if gene.lower() == "embb" or "alr":
if gene.lower() in "embb" or "alr":
infilename_mcsm_ppi2 = gene.lower() + '_complex_mcsm_ppi2_norm.csv'
infile_mcsm_ppi2 = outdir + 'mcsm_ppi2/' + infilename_mcsm_ppi2
mcsm_ppi2_df = pd.read_csv(infile_mcsm_ppi2, sep = ',')
#--------------------------------------------------------------
infilename_mcsm_f_snps = gene.lower() + '_mcsm_formatted_snps.csv'
infile_mcsm_f_snps = outdir + infilename_mcsm_f_snps
mcsm_f_snps = pd.read_csv(infile_mcsm_f_snps, sep = ',', names = ['mutationinformation'], header = None)
#=======
@ -158,12 +197,6 @@ out_filename_comb = gene.lower() + '_all_params.csv'
outfile_comb = outdir + out_filename_comb
print('Output filename:', outfile_comb
, '\n===================================================================')
o_join = 'outer'
l_join = 'left'
r_join = 'right'
i_join = 'inner'
# end of variable assignment for input and output files
#%%############################################################################
#=====================
@ -292,6 +325,44 @@ else:
, '\n======================================================')
sys.exit()
#--------------------------
# check if >1 chain
#--------------------------
deepddg_df.loc[:,'chain_id'].value_counts()
if len(deepddg_df.loc[:,'chain_id'].value_counts()) > 1:
print("\nChains detected: >1"
, "\nGene:", gene
, "\nChains:", deepddg_df.loc[:,'chain_id'].value_counts().index)
#--------------------------
# subset chain
#--------------------------
if gene.lower() == "embb":
sel_chain = "B"
else:
sel_chain = "A"
deepddg_df = deepddg_df[deepddg_df['chain_id'] == sel_chain]
#--------------------------
# Check for duplicates
#--------------------------
if len(deepddg_df['mutationinformation'].duplicated().value_counts())> 1:
print("\nFAIL: Duplicates detected in DeepDDG infile"
, "\nNo. of duplicates:"
, deepddg_df['mutationinformation'].duplicated().value_counts()[1]
, "\nformat deepDDG infile before proceeding")
sys.exit()
else:
print("\nPASS: No duplicates detected in DeepDDG infile")
#--------------------------
# Drop chain id col as other targets don't have itCheck for duplicates
#--------------------------
col_to_drop = ['chain_id']
deepddg_df = deepddg_df.drop(col_to_drop, axis = 1)
#%%=============================================================================
# Now merges begin
#%%=============================================================================
@ -311,28 +382,83 @@ get_aa_3lower(df = mcsm_df
#mcsm_df.columns = mcsm_df.columns.str.lower()
# foldx_df.shape
#mcsm_foldx_dfs = combine_dfs_with_checks(mcsm_df, foldx_df, my_join = o_join)
#mcsm_foldx_dfs = combine_dfs_with_checks(mcsm_df, foldx_df, my_join = "outer")
merging_cols_m1 = detect_common_cols(mcsm_df, foldx_df)
mcsm_foldx_dfs = pd.merge(mcsm_df, foldx_df, on = merging_cols_m1, how = o_join)
mcsm_foldx_dfs = pd.merge(mcsm_df
, foldx_df
, on = merging_cols_m1
, how = "outer")
ncols_m1 = len(mcsm_foldx_dfs.columns)
print('\n\nResult of first merge:', mcsm_foldx_dfs.shape
, '\n===================================================================')
mcsm_foldx_dfs[merging_cols_m1].apply(len)
mcsm_foldx_dfs[merging_cols_m1].apply(len) == len(mcsm_foldx_dfs)
#%% for embB and any other targets where mCSM-lig hasn't run for
# get the empty cells to be full of meaningful info
if mcsm_foldx_dfs.loc[:,'wild_type': 'mut_aa_3lower'].isnull().values.any():
print ("NAs detected in mcsm cols after merge")
##############################
# Extract relevant col values
# code to one
##############################
# wt_reg = r'(^[A-Z]{1})'
# print('wild_type:', wt_reg)
# mut_reg = r'[0-9]+(\w{1})$'
# print('mut type:', mut_reg)
mcsm_foldx_dfs['wild_type'] = mcsm_foldx_dfs.loc[:,'mutationinformation'].str.extract(r'(^[A-Z]{1})')
mcsm_foldx_dfs['position'] = mcsm_foldx_dfs.loc[:,'mutationinformation'].str.extract(r'([0-9]+)')
mcsm_foldx_dfs['mutant_type'] = mcsm_foldx_dfs.loc[:,'mutationinformation'].str.extract(r'[0-9]+([A-Z]{1})$')
# BEWARE: Bit of logic trap i.e if nan comes first
# in chain column, then nan will be populated!
#df['foo'] = df['chain'].unique()[0]
mcsm_foldx_dfs['chain'] = np.where(mcsm_foldx_dfs[['chain']].isnull().all(axis=1)
, mcsm_foldx_dfs['chain'].unique()[0]
, mcsm_foldx_dfs['chain'])
mcsm_foldx_dfs['ligand_id'] = np.where(mcsm_foldx_dfs[['ligand_id']].isnull().all(axis=1)
, mcsm_foldx_dfs['ligand_id'].unique()[0]
, mcsm_foldx_dfs['ligand_id'])
#--------------------------------------------------------------------------
mcsm_foldx_dfs['wild_pos'] = mcsm_foldx_dfs.loc[:,'wild_type'] + mcsm_foldx_dfs.loc[:,'position'].astype(int).apply(str)
mcsm_foldx_dfs['wild_chain_pos'] = mcsm_foldx_dfs.loc[:,'wild_type'] + mcsm_foldx_dfs.loc[:,'chain'] + mcsm_foldx_dfs.loc[:,'position'].astype(int).apply(str)
#############
# Map 1 letter
# code to 3Upper
#############
# initialise a sub dict that is lookup dict for
# 3-LETTER aa code to 1-LETTER aa code
lookup_dict = dict()
for k, v in oneletter_aa_dict.items():
lookup_dict[k] = v['three_letter_code_lower']
wt = mcsm_foldx_dfs['wild_type'].squeeze() # converts to a series that map works on
mcsm_foldx_dfs['wt_aa_3lower'] = wt.map(lookup_dict)
mut = mcsm_foldx_dfs['mutant_type'].squeeze()
mcsm_foldx_dfs['mut_aa_3lower'] = mut.map(lookup_dict)
#%%
print('==================================='
, '\nSecond merge: mcsm_foldx_dfs + deepddg'
, '\n===================================')
#deepddg_df = pd.read_csv(infile_deepddg, sep = ',')
#deepddg_df.columns
# merge with mcsm_foldx_dfs and deepddg_df
mcsm_foldx_deepddg_dfs = pd.merge(mcsm_foldx_dfs, deepddg_df, on = 'mutationinformation', how = l_join)
mcsm_foldx_deepddg_dfs = pd.merge(mcsm_foldx_dfs
, deepddg_df
, on = 'mutationinformation'
, how = "left")
mcsm_foldx_deepddg_dfs['deepddg_outcome'].value_counts()
ncols_deepddg_merge = len(mcsm_foldx_deepddg_dfs.columns)
mcsm_foldx_deepddg_dfs['position'] = mcsm_foldx_deepddg_dfs['position'].astype('int64')
#%%============================================================================
print('==================================='
, '\Third merge: dssp + kd'
@ -342,9 +468,12 @@ dssp_df.shape
kd_df.shape
rd_df.shape
#dssp_kd_dfs = combine_dfs_with_checks(dssp_df, kd_df, my_join = o_join)
#dssp_kd_dfs = combine_dfs_with_checks(dssp_df, kd_df, my_join = "outer")
merging_cols_m2 = detect_common_cols(dssp_df, kd_df)
dssp_kd_dfs = pd.merge(dssp_df, kd_df, on = merging_cols_m2, how = o_join)
dssp_kd_dfs = pd.merge(dssp_df
, kd_df
, on = merging_cols_m2
, how = "outer")
print('\n\nResult of third merge:', dssp_kd_dfs.shape
, '\n===================================================================')
@ -353,10 +482,12 @@ print('==================================='
, '\nFourth merge: third merge + rd_df'
, '\ndssp_kd_dfs + rd_df'
, '\n===================================')
#dssp_kd_rd_dfs = combine_dfs_with_checks(dssp_kd_dfs, rd_df, my_join = o_join)
#dssp_kd_rd_dfs = combine_dfs_with_checks(dssp_kd_dfs, rd_df, my_join = "outer")
merging_cols_m3 = detect_common_cols(dssp_kd_dfs, rd_df)
dssp_kd_rd_dfs = pd.merge(dssp_kd_dfs, rd_df, on = merging_cols_m3
, how = o_join)
dssp_kd_rd_dfs = pd.merge(dssp_kd_dfs
, rd_df
, on = merging_cols_m3
, how = "outer")
ncols_m3 = len(dssp_kd_rd_dfs.columns)
@ -369,23 +500,40 @@ print('======================================='
, '\nFifth merge: Second merge + fourth merge'
, '\nmcsm_foldx_dfs + dssp_kd_rd_dfs'
, '\n=======================================')
#combined_df = combine_dfs_with_checks(mcsm_foldx_dfs, dssp_kd_rd_dfs, my_join = i_join)
#combined_df = combine_dfs_with_checks(mcsm_foldx_dfs, dssp_kd_rd_dfs, my_join = "inner")
#merging_cols_m4 = detect_common_cols(mcsm_foldx_dfs, dssp_kd_rd_dfs)
#combined_df = pd.merge(mcsm_foldx_dfs, dssp_kd_rd_dfs, on = merging_cols_m4, how = i_join)
#combined_df = pd.merge(mcsm_foldx_dfs, dssp_kd_rd_dfs, on = merging_cols_m4, how = "inner")
#combined_df_expected_cols = ncols_m1 + ncols_m3 - len(merging_cols_m4)
# with deepddg values
merging_cols_m4 = detect_common_cols(mcsm_foldx_deepddg_dfs, dssp_kd_rd_dfs)
combined_df = pd.merge(mcsm_foldx_deepddg_dfs, dssp_kd_rd_dfs, on = merging_cols_m4, how = i_join)
combined_df = pd.merge(mcsm_foldx_deepddg_dfs
, dssp_kd_rd_dfs
, on = merging_cols_m4
, how = "inner")
combined_df_expected_cols = ncols_deepddg_merge + ncols_m3 - len(merging_cols_m4)
if len(combined_df) == len(mcsm_df) and len(combined_df.columns) == combined_df_expected_cols:
# FIXME: check logic, doesn't effect anything else!
if not gene == "embB":
print("\nGene is:", gene)
if len(combined_df) == len(mcsm_df) and len(combined_df.columns) == combined_df_expected_cols:
print('PASS: successfully combined 5 dfs'
, '\nNo. of rows combined_df:', len(combined_df)
, '\nNo. of cols combined_df:', len(combined_df.columns))
else:
sys.exit('FAIL: check individual df merges')
else:
#sys.exit('FAIL: check individual df merges')
print("\nGene is:", gene
, "\ncombined_df length:", len(combined_df)
, "\nmcsm_df_length:", len(mcsm_df)
)
if len(combined_df.columns) == combined_df_expected_cols:
print('PASS: successfully combined 5 dfs'
, '\nNo. of rows combined_df:', len(combined_df)
, '\nNo. of cols combined_df:', len(combined_df.columns))
else:
sys.exit('FAIL: check individual merges')
print('\nResult of Fourth merge:', combined_df.shape
, '\n===================================================================')
@ -401,7 +549,7 @@ combined_df['chain'].equals(combined_df['chain_id'])
combined_df['wild_type'].equals(combined_df['wild_type_kd']) # has nan
combined_df['wild_type'].equals(combined_df['wild_type_dssp'])
#sanity check
# sanity check
foo = combined_df[['wild_type', 'wild_type_kd', 'wt_3letter_caps', 'wt_aa_3lower', 'mut_aa_3lower']]
# Drop cols
@ -455,7 +603,11 @@ afor_df = afor_df.drop(['position'], axis = 1)
afor_cols = afor_df.columns
# merge
combined_stab_afor = pd.merge(combined_df_clean, afor_df, on = merging_cols_m5, how = l_join)
combined_stab_afor = pd.merge(combined_df_clean
, afor_df
, on = merging_cols_m5
, how = "left")
comb_afor_df_cols = combined_stab_afor.columns
comb_afor_expected_cols = len(combined_df_clean.columns) + len(afor_df.columns) - len(merging_cols_m5)
@ -467,15 +619,23 @@ if len(combined_stab_afor) == len(combined_df_clean) and len(combined_stab_afor.
else:
sys.exit('\nFAIL: check individual df merges')
print('\n\nResult of Fourth merge:', combined_stab_afor.shape
print('\n\nResult of Fifth merge:', combined_stab_afor.shape
, '\n===================================================================')
combined_stab_afor[merging_cols_m5].apply(len)
combined_stab_afor[merging_cols_m5].apply(len) == len(combined_stab_afor)
if len(combined_stab_afor) - combined_stab_afor['mutation'].isna().sum() == len(afor_df):
print('\nPASS: Merge successful for af and or'
, '\nNo. of nsSNPs with valid ORs: ', len(afor_df))
if (len(combined_stab_afor) - combined_stab_afor['mutation'].isna().sum()) == len(afor_df):
print('\nPASS: Merge successful for af and or with matched numbers')
if len(combined_stab_afor) - combined_stab_afor['mutation'].isna().sum() == len(afor_df)-len(afor_df[~afor_df['mutation'].isin(combined_stab_afor['mutation'])]):
print("\nMismatched numbers, OR df has extra snps not found in mcsm df"
, "\nNo. of nsSNPs with valid ORs:", len(afor_df)
, "\nNo. of mcsm nsSNPs: ", len(combined_df_clean)
, "\nNo. of OR nsSNPs not in mCSM df:"
, len(afor_df[~afor_df['mutation'].isin(combined_stab_afor['mutation'])])
, "\nWriting these mutations to file:")
orsnps_notmcsm = afor_df[~afor_df['mutation'].isin(combined_stab_afor['mutation'])]
else:
sys.exit('\nFAIL: merge unsuccessful for af and or')
@ -486,7 +646,7 @@ outfile_comb_afor = outdir + '/' + out_filename_comb_afor
print('Output filename:', outfile_comb_afor
, '\n===================================================================')
# # write csv
# write csv
print('Writing file: combined stability and afor')
combined_stab_afor.to_csv(outfile_comb_afor, index = False)
print('\nFinished writing file:'
@ -494,7 +654,20 @@ print('\nFinished writing file:'
, '\nNo. of cols:', combined_stab_afor.shape[1])
#%%============================================================================
# combine dynamut, dynamut2, and mcsm_na
dfs_list = [dynamut_df, dynamut2_df, mcsm_na_df]
#dfs_list = [dynamut_df, dynamut2_df, mcsm_na_df] # gid
if gene.lower() == "pnca":
dfs_list = [dynamut_df, dynamut2_df]
if gene.lower() == "gid":
dfs_list = [dynamut_df, dynamut2_df, mcsm_na_df]
if gene.lower() == "embb":
dfs_list = [dynamut2_df, mcsm_ppi2_df]
if gene.lower() == "katg":
dfs_list = [dynamut2_df]
if gene.lower() == "rpob":
dfs_list = [dynamut2_df]
if gene.lower() == "alr":
dfs_list = [dynamut2_df, mcsm_ppi2_df]
dfs_merged = reduce(lambda left,right: pd.merge(left
, right
@ -514,7 +687,7 @@ len(combined_stab_afor.columns)
combined_all_params = pd.merge(combined_stab_afor
, dfs_merged_clean
, on = merging_cols_m6
, how = i_join)
, how = "inner")
expected_ncols = len(dfs_merged_clean.columns) + len(combined_stab_afor.columns) - len(merging_cols_m6)
expected_nrows = len(combined_stab_afor)

View file

@ -70,7 +70,6 @@ arg_parser.add_argument('-m', '--make_dirs', help = 'Make dir for input and outp
arg_parser.add_argument('--debug', action ='store_true', help = 'Debug Mode')
args = arg_parser.parse_args()
#=======================================================================
#%% variable assignment: input and output paths & filenames

View file

@ -117,12 +117,20 @@ deepddg_df['deepddg_outcome'].value_counts()
len(deepddg_df.loc[deepddg_df['deepddg'] < 0])
len(deepddg_df.loc[deepddg_df['deepddg'] >= 0])
#----------------------------------------------
# drop extra columns to allow clean merging
deepddg_short_df = deepddg_df.drop(['chain_id', 'wild_type_deepddg', 'position', 'mutant_type_deepddg'], axis = 1)
#----------------------------------------------
#deepddg_short_df = deepddg_df.drop(['chain_id', 'wild_type_deepddg', 'position', 'mutant_type_deepddg'], axis = 1)
#----------------------------------------------
# embb (where gene-target has > 1 chain)
# include chain else the numbering will be messed up!
#----------------------------------------------
deepddg_short_df = deepddg_df.drop(['wild_type_deepddg', 'position', 'mutant_type_deepddg'], axis = 1)
# rearrange columns
deepddg_short_df.columns
deepddg_short_df = deepddg_short_df[["mutationinformation", "deepddg", "deepddg_outcome"]]
deepddg_short_df = deepddg_short_df[["chain_id", "mutationinformation", "deepddg", "deepddg_outcome"]]
#%% combine with mcsm snps
deepddg_mcsm_muts_dfs = pd.merge(deepddg_short_df

View file

@ -45,8 +45,6 @@ arg_parser.add_argument('--debug', action='store_true', help = 'Debug Mode')
args = arg_parser.parse_args()
#=======================================================================
#%% variable assignment: input and output
#drug = 'pyrazinamide'
#gene = 'pncA'
drug = args.drug
gene = args.gene
gene_match = gene + '_p.'