turned combining_dfs_plotting.R to a function and moved old script to redundant

This commit is contained in:
Tanushree Tunstall 2021-06-22 18:04:10 +01:00
parent e10ab6a7c6
commit 04a7cf15dc
3 changed files with 327 additions and 883 deletions

View file

@ -68,18 +68,18 @@ import_dirs(drug, gene)
# my_df_u_lig # my_df_u_lig
# dup_muts # dup_muts
#*********************************** #***********************************
#infile = "/home/tanu/git/Data/streptomycin/output/gid_comb_stab_struc_params.csv" #infile_params = "/home/tanu/git/Data/streptomycin/output/gid_comb_stab_struc_params.csv"
#if (!exists("infile") && exists("gene")){ if (!exists("infile_params") && exists("gene")){
if (!is.character(infile) && exists("gene")){ #if (!is.character(infile_params) && exists("gene")){
#in_filename_params = paste0(tolower(gene), "_all_params.csv") #in_filename_params = paste0(tolower(gene), "_all_params.csv")
in_filename_params = paste0(tolower(gene), "_comb_stab_struc_params.csv") # part combined for gid in_filename_params = paste0(tolower(gene), "_comb_stab_struc_params.csv") # part combined for gid
infile = paste0(outdir, "/", in_filename_params) infile_params = paste0(outdir, "/", in_filename_params)
cat("\nInput file not specified, assuming filename: ", infile, "\n") cat("\nInput file not specified, assuming filename: ", infile_params, "\n")
} }
# Get the DFs out of plotting_data() # Get the DFs out of plotting_data()
pd_df = plotting_data(infile) pd_df = plotting_data(infile_params)
my_df = pd_df[[1]] my_df = pd_df[[1]]
my_df_u = pd_df[[2]] my_df_u = pd_df[[2]]
my_df_u_lig = pd_df[[3]] my_df_u_lig = pd_df[[3]]

View file

@ -1,157 +1,60 @@
#!/usr/bin/env Rscript #!/usr/bin/env Rscript
#########################################################
# TASK: To combine struct params and meta data for plotting
# Input csv files:
# 1) <gene>_all_params.csv
# 2) <gene>_meta_data.csv
# Output: ###########################################################
# 1) muts with opposite effects on stability # TASK: To combine mcsm combined file and meta data.
# 2) large combined df including NAs for AF, OR,etc # This script is sourced from other .R scripts for plotting.
###########################################################
# load libraries and functions
#==========================================================
# combining_dfs_plotting():
# input args
## df1_mcsm_comb: <gene>_meta_data.csv
## df2_gene_metadata: <gene>_all_params.csv
## lig_dist_cutoff = 10, cut off distance
# Output: returns
# 1) large combined df including NAs for AF, OR,etc
# Dim: same no. of rows as gene associated meta_data_with_AFandOR # Dim: same no. of rows as gene associated meta_data_with_AFandOR
# 3) small combined df including NAs for AF, OR, etc. # 2) small combined df including NAs for AF, OR, etc.
# Dim: same as mcsm data # Dim: same as mcsm data
# 4) large combined df excluding NAs # 3) large combined df excluding NAs
# Dim: dim(#1) - na_count_df2 # Dim: dim(#1) - na_count_df2
# 5) small combined df excluding NAs # 4) small combined df excluding NAs
# Dim: dim(#2) - na_count_df3 # Dim: dim(#2) - na_count_df3
# This script is sourced from other .R scripts for plotting # 5) LIGAND large combined df including NAs for AF, OR,etc
######################################################### # Dim: dim()
#======================================================================= # 6) LIGAND small combined df excluding NAs
# working dir and loading libraries # Dim: dim()
getwd() #==========================================================
setwd("~/git/LSHTM_analysis/scripts/plotting/") combining_dfs_plotting <- function( my_df_u
getwd() , gene_metadata
, lig_dist_colname = 'ligand_distance'
require("getopt", quietly = TRUE) # cmd parse arguments , lig_dist_cutoff = 10){
# #======================================
# load functions # # 1: Read file: <gene>_meta data.csv
source("Header_TT.R") # #======================================
source("../functions/plotting_globals.R") # cat("\nReading meta data file:", df1_mcsm_comb)
source("../functions/plotting_data.R") #
# my_df_u <- read.csv(df1_mcsm_comb
############################################################# # , stringsAsFactors = F
# command line args # , header = T)
#******************** # cat("\nDim:", dim(my_df_u))
# !!!FUTURE TODO!!! #
# Can pass additional params of output/plot dir by user. # #======================================
# Not strictly required for my workflow since it is optimised # # 2: Read file: <gene>_meta data.csv
# to have a streamlined input/output flow without filename worries. # #======================================
#******************** # cat("\nReading meta data file:", df2_gene_metadata)
spec = matrix(c( #
"drug" ,"d", 1, "character", # gene_metadata <- read.csv(df2_gene_metadata
"gene" ,"g", 1, "character", # , stringsAsFactors = F
"data" ,"f", 2, "character" # , header = T)
), byrow = TRUE, ncol = 4) # cat("\nDim:", dim(gene_metadata))
#
opt = getopt(spec) # table(gene_metadata$mutation_info)
#FIXME: detect if script running from cmd, then set these
drug = opt$drug
gene = opt$gene
infile = opt$data
# hardcoding when not using cmd
#drug = "streptomycin"
#gene = "gid"
if(is.null(drug)|is.null(gene)) {
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
}
#########################################################
# call functions with relevant args
#***********************************
# import_dirs(): returns
# datadir
# indir
# outdir
# plotdir
# dr_muts_col
# other_muts_col
# resistance_col
#***********************************
import_dirs(drug, gene)
#***********************************
# plotting_data(): returns
# my_df
# my_df_u
# my_df_u_lig
# dup_muts
#***********************************
#infile = "/home/tanu/git/Data/streptomycin/output/gid_comb_stab_struc_params.csv"
if (!exists("infile") && exists("gene")){
#if (!is.character(infile) && exists("gene")){
#in_filename_params = paste0(tolower(gene), "_all_params.csv")
#in_filename_params = paste0(tolower(gene), "_comb_stab_struc_params.csv") # part combined for gid
in_filename_params = paste0(tolower(gene), "_comb_afor.csv") # part combined for gid
infile = paste0(outdir, "/", in_filename_params)
cat("\nInput file not specified, assuming filename: ", infile, "\n")
}
# Get the DFs out of plotting_data()
pd_df = plotting_data(infile)
my_df = pd_df[[1]]
my_df_u = pd_df[[2]]
my_df_u_lig = pd_df[[3]]
dup_muts = pd_df[[4]]
cat(paste0("Directories imported:"
, "\ndatadir:" , datadir
, "\nindir:" , indir
, "\noutdir:" , outdir
, "\nplotdir:" , plotdir))
cat(paste0("\nVariables imported:"
, "\ndrug:" , drug
, "\ngene:" , gene
, "\ngene match:" , gene_match
, "\n"))
#========================================================
#===========
# input
#===========
#in_file1: output of plotting_data.R
# my_df_u
# infile 2: gene associated meta data
#in_filename_gene_metadata = paste0(tolower(gene), "_meta_data_with_AFandOR.csv")
in_filename_gene_metadata = paste0(tolower(gene), "_metadata.csv")
infile_gene_metadata = paste0(outdir, "/", in_filename_gene_metadata)
cat(paste0("Input infile 2:", infile_gene_metadata))
#===========
# output
#===========
# other variables that you can write
# primarily called by other scripts for plotting
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
#%%===============================================================
###########################
# 2: Read file: <gene>_meta data.csv
###########################
cat("Reading meta data file:", infile_gene_metadata)
gene_metadata <- read.csv(infile_gene_metadata
, stringsAsFactors = F
, header = T)
cat("Dim:", dim(gene_metadata))
table(gene_metadata$mutation_info)
# counting NAs in AF, OR cols # counting NAs in AF, OR cols
# or_mychisq # or_mychisq
@ -202,15 +105,18 @@ head(gene_metadata$mutationinformation)
# Find common columns b/w two df # Find common columns b/w two df
merging_cols = intersect(colnames(my_df_u), colnames(gene_metadata)) merging_cols = intersect(colnames(my_df_u), colnames(gene_metadata))
cat(paste0("Merging dfs with NAs: big df (1-many relationship b/w id & mut)" cat(paste0("\nMerging dfs with NAs: big df (1-many relationship b/w id & mut)"
, "\nNo. of merging cols:", length(merging_cols) , "\nNo. of merging cols:", length(merging_cols)
, "\nMerging columns identified:")) , "\nMerging columns identified:"))
print(merging_cols) print(merging_cols)
# using all common cols create confusion, so pick one! # using all common cols create confusion, so pick one!
# merging_cols = merging_cols[[1]] # merging_cols = merging_cols[[1]]
merging_cols = 'mutationinformation' merging_cols = 'mutationinformation'
cat("\nLinking column being used: mutationinformation")
# important checks! # important checks!
table(nchar(my_df_u$mutationinformation)) table(nchar(my_df_u$mutationinformation))
table(nchar(my_df_u$wild_type)) table(nchar(my_df_u$wild_type))
@ -223,8 +129,9 @@ merged_df2 = merge(x = gene_metadata
, by = merging_cols , by = merging_cols
, all.y = T) , all.y = T)
cat("Dim of merged_df2: ", dim(merged_df2)) cat("\nDim of merged_df2: ", dim(merged_df2))
# Remove duplicate columns
dup_cols = names(merged_df2)[grepl("\\.x$|\\.y$", names(merged_df2))] dup_cols = names(merged_df2)[grepl("\\.x$|\\.y$", names(merged_df2))]
cat("\nNo. of duplicate cols:", length(dup_cols)) cat("\nNo. of duplicate cols:", length(dup_cols))
check_df_cols = merged_df2[dup_cols] check_df_cols = merged_df2[dup_cols]
@ -238,39 +145,24 @@ identical(check_df_cols$mutation.x, check_df_cols$mutation.y)
cols_to_drop = names(merged_df2)[grepl("\\.y",names(merged_df2))] cols_to_drop = names(merged_df2)[grepl("\\.y",names(merged_df2))]
cat("\nNo. of cols to drop:", length(cols_to_drop)) cat("\nNo. of cols to drop:", length(cols_to_drop))
# subset # Drop duplicate columns
merged_df2 = merged_df2[,!(names(merged_df2)%in%cols_to_drop)] merged_df2 = merged_df2[,!(names(merged_df2)%in%cols_to_drop)]
# rename the cols with '.x' suffix # Drop the '.x' suffix in the colnames
names(merged_df2)[grepl("\\.x$|\\.y$", names(merged_df2))] names(merged_df2)[grepl("\\.x$|\\.y$", names(merged_df2))]
colnames(merged_df2) <- gsub("\\.x$", "", colnames(merged_df2)) colnames(merged_df2) <- gsub("\\.x$", "", colnames(merged_df2))
names(merged_df2)[grepl("\\.x$|\\.y$", names(merged_df2))] names(merged_df2)[grepl("\\.x$|\\.y$", names(merged_df2))]
#======================================================
#-------------
# DEBUG
#-------------
merged_df2_g = merged_df2[,!(names(merged_df2)%in%cols_to_drop)]
check_cols = colnames(merged_df2)[!colnames(merged_df2)%in%colnames(merged_df2_g)]
if ( identical(check_cols, cols_to_drop) ){
cat("\nPASS: cols identified have been successfully dropped"
, "\nNo. of cols dropped: ", length(check_cols)
, "\nNo. of cols in original df: ", ncol(merged_df2)
, "\nNo. of cols in revised df: " , ncol(merged_df2_g))
}
#======================================================
head(merged_df2$position) head(merged_df2$position)
# sanity check # sanity check
cat("Checking nrows in merged_df2") cat("\nChecking nrows in merged_df2")
if(nrow(gene_metadata) == nrow(merged_df2)){ if(nrow(gene_metadata) == nrow(merged_df2)){
cat("PASS: nrow(merged_df2) = nrow (gene associated gene_metadata)" cat("\nPASS: nrow(merged_df2) = nrow (gene associated gene_metadata)"
,"\nExpected no. of rows: ",nrow(gene_metadata) ,"\nExpected no. of rows: ",nrow(gene_metadata)
,"\nGot no. of rows: ", nrow(merged_df2)) ,"\nGot no. of rows: ", nrow(merged_df2))
} else{ } else{
cat("FAIL: nrow(merged_df2)!= nrow(gene associated gene_metadata)" cat("\nFAIL: nrow(merged_df2)!= nrow(gene associated gene_metadata)"
, "\nExpected no. of rows after merge: ", nrow(gene_metadata) , "\nExpected no. of rows after merge: ", nrow(gene_metadata)
, "\nGot no. of rows: ", nrow(merged_df2) , "\nGot no. of rows: ", nrow(merged_df2)
, "\nFinding discrepancy") , "\nFinding discrepancy")
@ -281,16 +173,16 @@ if(nrow(gene_metadata) == nrow(merged_df2)){
quit() quit()
} }
#========================= #=================================================================
# Merge 2: merged_df3 # Merge 2: merged_df3
# dfs with NAs in ORs # dfs with NAs in ORs
# #
# Cannot trust lineage, country from this df as the same mutation # Cannot trust lineage, country from this df as the same mutation
# can have many different lineages # can have many different lineages
# but this should be good for the numerical corr plots # but this should be good for the numerical corr plots
#========================= #==================================================================
# remove duplicated mutations # remove duplicated mutations
cat("Merging dfs without NAs: small df (removing muts with no AF|OR associated)" cat("\nMerging dfs without NAs: small df (removing muts with no AF|OR associated)"
,"\nCannot trust lineage info from this" ,"\nCannot trust lineage info from this"
,"\nlinking col: mutationinforamtion" ,"\nlinking col: mutationinforamtion"
,"\nfilename: merged_df3") ,"\nfilename: merged_df3")
@ -299,13 +191,13 @@ merged_df3 = merged_df2[!duplicated(merged_df2$mutationinformation),]
head(merged_df3$position); tail(merged_df3$position) # should be sorted head(merged_df3$position); tail(merged_df3$position) # should be sorted
# sanity check # sanity check
cat("Checking nrows in merged_df3") cat("\nChecking nrows in merged_df3")
if(nrow(my_df_u) == nrow(merged_df3)){ if(nrow(my_df_u) == nrow(merged_df3)){
cat("PASS: No. of rows match with my_df" cat("\nPASS: No. of rows match with my_df"
,"\nExpected no. of rows: ", nrow(my_df_u) ,"\nExpected no. of rows: ", nrow(my_df_u)
,"\nGot no. of rows: ", nrow(merged_df3)) ,"\nGot no. of rows: ", nrow(merged_df3))
} else { } else {
cat("FAIL: No. of rows mismatch" cat("\nFAIL: No. of rows mismatch"
, "\nNo. of rows my_df: ", nrow(my_df_u) , "\nNo. of rows my_df: ", nrow(my_df_u)
, "\nNo. of rows merged_df3: ", nrow(merged_df3)) , "\nNo. of rows merged_df3: ", nrow(merged_df3))
quit() quit()
@ -317,30 +209,29 @@ if(nrow(my_df_u) == nrow(merged_df3)){
if (identical(sum(is.na(merged_df3$or_kin)) if (identical(sum(is.na(merged_df3$or_kin))
, sum(is.na(merged_df3$pwald_kin)) , sum(is.na(merged_df3$pwald_kin))
, sum(is.na(merged_df3$af_kin)))){ , sum(is.na(merged_df3$af_kin)))){
cat("PASS: NA count match for OR, pvalue and AF\n") cat("\nPASS: NA count match for OR, pvalue and AF\n")
na_count_df3 = sum(is.na(merged_df3$af_kin)) na_count_df3 = sum(is.na(merged_df3$af_kin))
cat("No. of NAs: ", sum(is.na(merged_df3$or_kin))) cat("\nNo. of NAs: ", sum(is.na(merged_df3$or_kin)))
} else{ } else{
cat("FAIL: NA count mismatch" cat("\nFAIL: NA count mismatch"
, "\nNA in OR: ", sum(is.na(merged_df3$or_kin)) , "\nNA in OR: ", sum(is.na(merged_df3$or_kin))
, "\nNA in pvalue: ", sum(is.na(merged_df3$pwald_kin)) , "\nNA in pvalue: ", sum(is.na(merged_df3$pwald_kin))
, "\nNA in AF:", sum(is.na(merged_df3$af_kin))) , "\nNA in AF:", sum(is.na(merged_df3$af_kin)))
} }
#========================= #===================================================
# Merge3: merged_df2_comp # Merge3: merged_df2_comp
# same as merge 1 but excluding NAs from ORs, etc. # same as merge 1 but excluding NAs from ORs, etc.
#========================= #====================================================
cat("Merging dfs without any NAs: big df (1-many relationship b/w id & mut)" cat("\nMerging dfs without any NAs: big df (1-many relationship b/w id & mut)"
,"\nlinking col: Mutationinforamtion"
,"\nfilename: merged_df2_comp") ,"\nfilename: merged_df2_comp")
na_count_df2 = sum(is.na(merged_df2$af)) na_count_df2 = sum(is.na(merged_df2$af))
merged_df2_comp = merged_df2[!is.na(merged_df2$af),] merged_df2_comp = merged_df2[!is.na(merged_df2$af),]
# sanity check: no +-1 gymnastics # sanity check: no +-1 gymnastics
cat("Checking nrows in merged_df2_comp") cat("\nChecking nrows in merged_df2_comp")
if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count_df2)){ if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count_df2)){
cat("\nPASS: No. of rows match" cat("\nPASS: No. of rows match"
,"\nDim of merged_df2_comp: " ,"\nDim of merged_df2_comp: "
@ -348,21 +239,21 @@ if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count_df2)){
, "\nNo. of rows: ", nrow(merged_df2_comp) , "\nNo. of rows: ", nrow(merged_df2_comp)
, "\nNo. of cols: ", ncol(merged_df2_comp)) , "\nNo. of cols: ", ncol(merged_df2_comp))
}else{ }else{
cat("FAIL: No. of rows mismatch" cat("\nFAIL: No. of rows mismatch"
,"\nExpected no. of rows: ", nrow(merged_df2) - na_count_df2 ,"\nExpected no. of rows: ", nrow(merged_df2) - na_count_df2
,"\nGot no. of rows: ", nrow(merged_df2_comp)) ,"\nGot no. of rows: ", nrow(merged_df2_comp))
} }
#========================= #======================================================
# Merge4: merged_df3_comp # Merge4: merged_df3_comp
# same as merge 2 but excluding NAs from ORs, etc or # same as merge 2 but excluding NAs from ORs, etc or
# remove duplicate mutation information # remove duplicate mutation information
#========================= #=======================================================
na_count_df3 = sum(is.na(merged_df3$af)) na_count_df3 = sum(is.na(merged_df3$af))
#merged_df3_comp = merged_df3_comp[!duplicated(merged_df3_comp$mutationinformation),] # a way #merged_df3_comp = merged_df3_comp[!duplicated(merged_df3_comp$mutationinformation),] # a way
merged_df3_comp = merged_df3[!is.na(merged_df3$af),] # another way merged_df3_comp = merged_df3[!is.na(merged_df3$af),] # another way
cat("Checking nrows in merged_df3_comp") cat("\nChecking nrows in merged_df3_comp")
if(nrow(merged_df3_comp) == (nrow(merged_df3) - na_count_df3)){ if(nrow(merged_df3_comp) == (nrow(merged_df3) - na_count_df3)){
cat("\nPASS: No. of rows match" cat("\nPASS: No. of rows match"
@ -371,7 +262,7 @@ if(nrow(merged_df3_comp) == (nrow(merged_df3) - na_count_df3)){
, "\nNo. of rows: ", nrow(merged_df3_comp) , "\nNo. of rows: ", nrow(merged_df3_comp)
, "\nNo. of cols: ", ncol(merged_df3_comp)) , "\nNo. of cols: ", ncol(merged_df3_comp))
}else{ }else{
cat("FAIL: No. of rows mismatch" cat("\nFAIL: No. of rows mismatch"
,"\nExpected no. of rows: ", nrow(merged_df3) - na_count_df3 ,"\nExpected no. of rows: ", nrow(merged_df3) - na_count_df3
,"\nGot no. of rows: ", nrow(merged_df3_comp)) ,"\nGot no. of rows: ", nrow(merged_df3_comp))
} }
@ -383,37 +274,35 @@ bar = merged_df3_comp[!duplicated(merged_df3_comp$mutationinformation),]
all.equal(foo, bar) all.equal(foo, bar)
#summary(comparedf(foo, bar)) #summary(comparedf(foo, bar))
#==============================================================
##################################################################### #####################################################################
# Combining: LIG # Combining: LIG
##################################################################### #####################################################################
#========================= #============
# Merges 5-8 # Merges 5-8
#========================= #============
df_lig = my_df_u[my_df_u[[lig_dist_colname]]<lig_dist_cutoff,]
merged_df2_lig = merged_df2[merged_df2$ligand_distance<10,] merged_df2_lig = merged_df2[merged_df2$ligand_distance<lig_dist_cutoff,]
merged_df2_comp_lig = merged_df2_comp[merged_df2_comp$ligand_distance<10,] merged_df2_comp_lig = merged_df2_comp[merged_df2_comp$ligand_distance<lig_dist_cutoff,]
merged_df3_lig = merged_df3[merged_df3$ligand_distance<10,] merged_df3_lig = merged_df3[merged_df3$ligand_distance<lig_dist_cutoff,]
merged_df3_comp_lig = merged_df3_comp[merged_df3_comp$ligand_distance<10,] merged_df3_comp_lig = merged_df3_comp[merged_df3_comp$ligand_distance<lig_dist_cutoff,]
# sanity check # sanity check
if (nrow(merged_df3_lig) == nrow(my_df_u_lig)){ if (nrow(merged_df3_lig) == nrow(df_lig)){
print("PASS: verified merged_df3_lig") print("\nPASS: verified merged_df3_lig")
}else{ }else{
cat(paste0("FAIL: nrow mismatch for merged_df3_lig" cat(paste0("\nFAIL: nrow mismatch for merged_df3_lig"
, "\nExpected:", nrow(my_df_u_lig) , "\nExpected:", nrow(df_lig)
, "\nGot:", nrow(merged_df3_lig))) , "\nGot:", nrow(merged_df3_lig)))
} }
#============================================================== #==============================================================
################# ############################################
# OPTIONAL: write output files in one go # OPTIONAL: write output files in one go
################# ############################################
#outvars = c(#"merged_df2", #outvars = c(#"merged_df2",
#"merged_df2_comp", #"merged_df2_comp",
#"merged_df2_lig", #"merged_df2_lig",
@ -438,11 +327,8 @@ if (nrow(merged_df3_lig) == nrow(my_df_u_lig)){
# , "\nNo. of cols: ", ncol(get(i)), "\n") # , "\nNo. of cols: ", ncol(get(i)), "\n")
#} #}
# clear variables return(list(merged_df2, merged_df3
rm(foo, bar, gene_metadata , merged_df2_comp, merged_df3_comp
, in_filename_params, infile_params, merging_cols , merged_df2_lig, merged_df3_lig))
, in_filename_gene_metadata, infile_gene_metadata)
#========================================================================== }
# end of script
##==========================================================================

View file

@ -1,442 +0,0 @@
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
#########################################################
# TASK: To combine struct params and meta data for plotting
# Input csv files:
# 1) <gene>_all_params.csv
# 2) <gene>_meta_data.csv
# Output:
# 1) muts with opposite effects on stability
# 2) large combined df including NAs for AF, OR,etc
# Dim: same no. of rows as gene associated meta_data_with_AFandOR
# 3) small combined df including NAs for AF, OR, etc.
# Dim: same as mcsm data
# 4) large combined df excluding NAs
# Dim: dim(#1) - no. of NAs(AF|OR) + 1
# 5) small combined df excluding NAs
# Dim: dim(#2) - no. of unique NAs - 1
# This script is sourced from other .R scripts for plotting
#########################################################
##########################################################
# Installing and loading required packages
##########################################################
source("Header_TT.R")
#require(data.table)
#require(arsenal)
#require(compare)
#library(tidyverse)
#%% variable assignment: input and output paths & filenames
drug = "pyrazinamide"
gene = "pncA"
gene_match = paste0(gene,"_p.")
cat(gene_match)
#=============
# directories
#=============
datadir = paste0("~/git/Data")
indir = paste0(datadir, "/", drug, "/input")
outdir = paste0("~/git/Data", "/", drug, "/output")
#===========
# input
#===========
#in_filename = "mcsm_complex1_normalised.csv"
in_filename_params = paste0(tolower(gene), "_all_params.csv")
infile_params = paste0(outdir, "/", in_filename_params)
cat(paste0("Input file 1:", infile_params) )
# infile 2: gene associated meta data
#in_filename_gene_metadata = paste0(tolower(gene), "_meta_data_with_AFandOR.csv")
in_filename_gene_metadata = paste0(tolower(gene), "_metadata.csv")
infile_gene_metadata = paste0(outdir, "/", in_filename_gene_metadata)
cat(paste0("Input infile 2:", infile_gene_metadata))
#===========
# output
#===========
# mutations with opposite effects
out_filename_opp_muts = paste0(tolower(gene), "_muts_opp_effects.csv")
outfile_opp_muts = paste0(outdir, "/", out_filename_opp_muts)
#%%===============================================================
###########################
# Read file: struct params
###########################
cat("Reading struct params including mcsm:"
, in_filename_params)
mcsm_data = read.csv(infile_params
#, row.names = 1
, stringsAsFactors = F
, header = T)
cat("Input dimensions:", dim(mcsm_data)) #416, 86
# clear variables
rm(in_filename_params, infile_params)
str(mcsm_data)
table(mcsm_data$duet_outcome); sum(table(mcsm_data$duet_outcome) )
# spelling Correction 1: DUET incase American spelling needed!
#mcsm_data$duet_outcome[mcsm_data$duet_outcome=="Stabilising"] <- "Stabilizing"
#mcsm_data$duet_outcome[mcsm_data$duet_outcome=="Destabilising"] <- "Destabilizing"
# checks: should be the same as above
table(mcsm_data$duet_outcome); sum(table(mcsm_data$duet_outcome) )
head(mcsm_data$duet_outcome); tail(mcsm_data$duet_outcome)
# spelling Correction 2: Ligand incase American spelling needed!
table(mcsm_data$ligand_outcome); sum(table(mcsm_data$ligand_outcome) )
#mcsm_data$ligand_outcome[mcsm_data$ligand_outcome=="Stabilising"] <- "Stabilizing"
#mcsm_data$ligand_outcome[mcsm_data$ligand_outcome=="Destabilising"] <- "Destabilizing"
# checks: should be the same as above
table(mcsm_data$ligand_outcome); sum(table(mcsm_data$ligand_outcome) )
head(mcsm_data$ligand_outcome); tail(mcsm_data$ligand_outcome)
# muts with opposing effects on protomer and ligand stability
table(mcsm_data$duet_outcome != mcsm_data$ligand_outcome)
changes = mcsm_data[which(mcsm_data$duet_outcome != mcsm_data$ligand_outcome),]
# sanity check: redundant, but uber cautious!
dl_i = which(mcsm_data$duet_outcome != mcsm_data$ligand_outcome)
ld_i = which(mcsm_data$ligand_outcome != mcsm_data$duet_outcome)
cat("Identifying muts with opposite stability effects")
if(nrow(changes) == (table(mcsm_data$duet_outcome != mcsm_data$ligand_outcome)[[2]]) & identical(dl_i,ld_i)) {
cat("PASS: muts with opposite effects on stability and affinity correctly identified"
, "\nNo. of such muts: ", nrow(changes))
}else {
cat("FAIL: unsuccessful in extracting muts with changed stability effects")
}
#***************************
# write file: changed muts
write.csv(changes, outfile_opp_muts)
cat("Finished writing file for muts with opp effects:"
, "\nFilename: ", outfile_opp_muts
, "\nDim:", dim(changes))
# clear variables
rm(out_filename_opp_muts, outfile_opp_muts)
rm(changes, dl_i, ld_i)
#***************************
# count na in each column
na_count = sapply(mcsm_data, function(y) sum(length(which(is.na(y))))); na_count
# sort by mutationinformation
##mcsm_data = mcsm_data[order(mcsm_data$mutationinformation),]
##head(mcsm_data$mutationinformation)
df_ncols = ncol(mcsm_data)
# REMOVE as this is dangerous due to dup muts
# get freq count of positions and add to the df
#setDT(mcsm_data)[, occurrence := .N, by = .(position)]
#cat("Added 1 col: position frequency to see which posn has how many muts"
# , "\nNo. of cols now", ncol(mcsm_data)
# , "\nNo. of cols before: ", df_ncols)
#pos_count_check = data.frame(mcsm_data$position, mcsm_data$occurrence)
# check duplicate muts
if (length(unique(mcsm_data$mutationinformation)) == length(mcsm_data$mutationinformation)){
cat("No duplicate mutations in mcsm data")
}else{
dup_muts = mcsm_data[duplicated(mcsm_data$mutationinformation),]
dup_muts_nu = length(unique(dup_muts$mutationinformation))
cat(paste0("CAUTION:", nrow(dup_muts), " Duplicate mutations identified"
, "\nOf these, no. of unique mutations are:", dup_muts_nu
, "\nExtracting df with unique mutations only"))
mcsm_data_u = mcsm_data[!duplicated(mcsm_data$mutationinformation),]
}
if (nrow(mcsm_data_u) == length(unique(mcsm_data$mutationinformation))){
cat("Df without duplicate mutations successfully extracted")
} else{
cat("FAIL: could not extract clean df!")
quit()
}
###########################
# 2: Read file: <gene>_meta data.csv
###########################
cat("Reading meta data file:", infile_gene_metadata)
gene_metadata <- read.csv(infile_gene_metadata
, stringsAsFactors = F
, header = T)
cat("Dim:", dim(gene_metadata))
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# FIXME: remove
# counting NAs in AF, OR cols:
if (identical(sum(is.na(gene_metadata$OR))
, sum(is.na(gene_metadata$pvalue))
, sum(is.na(gene_metadata$AF)))){
cat("PASS: NA count match for OR, pvalue and AF\n")
na_count = sum(is.na(gene_metadata$AF))
cat("No. of NAs: ", sum(is.na(gene_metadata$OR)))
} else{
cat("FAIL: NA count mismatch"
, "\nNA in OR: ", sum(is.na(gene_metadata$OR))
, "\nNA in pvalue: ", sum(is.na(gene_metadata$pvalue))
, "\nNA in AF:", sum(is.na(gene_metadata$AF)))
}
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# clear variables
rm(in_filename_gene_metadata, infile_gene_metadata)
str(gene_metadata)
# sort by position (same as mcsm_data)
# earlier it was mutationinformation
#head(gene_metadata$mutationinformation)
#gene_metadata = gene_metadata[order(gene_metadata$mutationinformation),]
##head(gene_metadata$mutationinformation)
head(gene_metadata$position)
gene_metadata = gene_metadata[order(gene_metadata$position),]
head(gene_metadata$position)
###########################
# Merge 1: two dfs with NA
# merged_df2
###########################
head(mcsm_data$mutationinformation)
head(gene_metadata$mutationinformation)
# Find common columns b/w two df
merging_cols = intersect(colnames(mcsm_data), colnames(gene_metadata))
cat(paste0("Merging dfs with NAs: big df (1-many relationship b/w id & mut)"
, "\nNo. of merging cols:", length(merging_cols)
, "\nMerging columns identified:"))
print(merging_cols)
#=============
# merged_df2): gene_metadata + mcsm_data
#==============
merged_df2 = merge(x = gene_metadata
, y = mcsm_data
, by = merging_cols
, all.y = T)
cat("Dim of merged_df2: ", dim(merged_df2) #4520, 11
)
head(merged_df2$position)
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# FIXME: count how many unique muts have entries in meta data
# sanity check
cat("Checking nrows in merged_df2")
if(nrow(gene_metadata) == nrow(merged_df2)){
cat("nrow(merged_df2) = nrow (gene associated gene_metadata)"
,"\nExpected no. of rows: ",nrow(gene_metadata)
,"\nGot no. of rows: ", nrow(merged_df2))
} else{
cat("nrow(merged_df2)!= nrow(gene associated gene_metadata)"
, "\nExpected no. of rows after merge: ", nrow(gene_metadata)
, "\nGot no. of rows: ", nrow(merged_df2)
, "\nFinding discrepancy")
merged_muts_u = unique(merged_df2$mutationinformation)
meta_muts_u = unique(gene_metadata$mutationinformation)
# find the index where it differs
unique(meta_muts_u[! meta_muts_u %in% merged_muts_u])
}
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# sort by position
head(merged_df2$position)
merged_df2 = merged_df2[order(merged_df2$position),]
head(merged_df2$position)
merged_df2v3 = merge(x = gene_metadata
, y = mcsm_data
, by = merging_cols
, all = T)
merged_df2v2 = merge(x = gene_metadata
, y = mcsm_data
, by = merging_cols
, all.x = T)
#!=!=!=!=!=!=!=!
# COMMENT: used all.y since position 186 is not part of the struc,
# hence doesn"t have a mcsm value
# but 186 is associated with mutation
#!=!=!=!=!=!=!=!
# should be False
identical(merged_df2, merged_df2v2)
table(merged_df2$position%in%merged_df2v2$position)
rm(merged_df2v2)
#!!!!!!!!!!! check why these differ
#########
# merge 3b (merged_df3):remove duplicate mutation information
#########
cat("Merging dfs without NAs: small df (removing muts with no AF|OR associated)"
,"\nCannot trust lineage info from this"
,"\nlinking col: Mutationinforamtion"
,"\nfilename: merged_df3")
#==#=#=#=#=#=#
# Cannot trust lineage, country from this df as the same mutation
# can have many different lineages
# but this should be good for the numerical corr plots
#=#=#=#=#=#=#=
merged_df3 = merged_df2[!duplicated(merged_df2$mutationinformation),]
head(merged_df3$position); tail(merged_df3$position) # should be sorted
# sanity check
cat("Checking nrows in merged_df3")
if(nrow(mcsm_data) == nrow(merged_df3)){
cat("PASS: No. of rows match with mcsm_data"
,"\nExpected no. of rows: ", nrow(mcsm_data)
,"\nGot no. of rows: ", nrow(merged_df3))
} else {
cat("FAIL: No. of rows mismatch"
, "\nNo. of rows mcsm_data: ", nrow(mcsm_data)
, "\nNo. of rows merged_df3: ", nrow(merged_df3))
}
# counting NAs in AF, OR cols in merged_df3
# this is becuase mcsm has no AF, OR cols,
# so you cannot count NAs
if (identical(sum(is.na(merged_df3$OR))
, sum(is.na(merged_df3$pvalue))
, sum(is.na(merged_df3$AF)))){
cat("PASS: NA count match for OR, pvalue and AF\n")
na_count_df3 = sum(is.na(merged_df3$AF))
cat("No. of NAs: ", sum(is.na(merged_df3$OR)))
} else{
cat("FAIL: NA count mismatch"
, "\nNA in OR: ", sum(is.na(merged_df3$OR))
, "\nNA in pvalue: ", sum(is.na(merged_df3$pvalue))
, "\nNA in AF:", sum(is.na(merged_df3$AF)))
}
###########################
# 4: merging two dfs: without NA
###########################
#########
# merge 4a (merged_df2_comp): same as merge 1 but excluding NA
#########
cat("Merging dfs without any NAs: big df (1-many relationship b/w id & mut)"
,"\nlinking col: Mutationinforamtion"
,"\nfilename: merged_df2_comp")
merged_df2_comp = merged_df2[!is.na(merged_df2$AF),]
#merged_df2_comp = merged_df2[!duplicated(merged_df2$mutationinformation),]
# sanity check
cat("Checking nrows in merged_df2_comp")
if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count + 1)){
cat("PASS: No. of rows match"
,"\nDim of merged_df2_comp: "
,"\nExpected no. of rows: ", nrow(merged_df2) - na_count + 1
, "\nNo. of rows: ", nrow(merged_df2_comp)
, "\nNo. of cols: ", ncol(merged_df2_comp))
}else{
cat("FAIL: No. of rows mismatch"
,"\nExpected no. of rows: ", nrow(merged_df2) - na_count + 1
,"\nGot no. of rows: ", nrow(merged_df2_comp))
}
#########
# merge 4b (merged_df3_comp): remove duplicate mutation information
#########
merged_df3_comp = merged_df2_comp[!duplicated(merged_df2_comp$mutationinformation),]
cat("Dim of merged_df3_comp: "
, "\nNo. of rows: ", nrow(merged_df3_comp)
, "\nNo. of cols: ", ncol(merged_df3_comp))
# alternate way of deriving merged_df3_comp
foo = merged_df3[!is.na(merged_df3$AF),]
# compare dfs: foo and merged_df3_com
all.equal(foo, merged_df3)
summary(comparedf(foo, merged_df3))
# sanity check
cat("Checking nrows in merged_df3_comp")
if(nrow(merged_df3_comp) == nrow(merged_df3)){
cat("NO NAs detected in merged_df3 in AF|OR cols"
,"\nNo. of rows are identical: ", nrow(merged_df3))
} else{
if(nrow(merged_df3_comp) == nrow(merged_df3) - na_count_df3) {
cat("PASS: NAs detected in merged_df3 in AF|OR cols"
, "\nNo. of NAs: ", na_count_df3
, "\nExpected no. of rows in merged_df3_comp: ", nrow(merged_df3) - na_count_df3
, "\nGot no. of rows: ", nrow(merged_df3_comp))
}
}
#=============== end of combining df
#*********************
# writing 1 file in the style of a loop: merged_df3
# print(output dir)
#i = "merged_df3"
#out_filename = paste0(i, ".csv")
#outfile = paste0(outdir, "/", out_filename)
#cat("Writing output file: "
# ,"\nFilename: ", out_filename
# ,"\nPath: ", outdir)
#template: write.csv(merged_df3, "merged_df3.csv")
#write.csv(get(i), outfile, row.names = FALSE)
#cat("Finished writing: ", outfile
# , "\nNo. of rows: ", nrow(get(i))
# , "\nNo. of cols: ", ncol(get(i)))
#%% write_output files; all 4 files:
outvars = c("merged_df2"
, "merged_df3"
, "merged_df2_comp"
, "merged_df3_comp")
cat("Writing output files: "
, "\nPath:", outdir)
for (i in outvars){
# cat(i, "\n")
out_filename = paste0(i, ".csv")
# cat(out_filename, "\n")
# cat("getting value of variable: ", get(i))
outfile = paste0(outdir, "/", out_filename)
# cat("Full output path: ", outfile, "\n")
cat("Writing output file:"
,"\nFilename: ", out_filename,"\n")
write.csv(get(i), outfile, row.names = FALSE)
cat("Finished writing: ", outfile
, "\nNo. of rows: ", nrow(get(i))
, "\nNo. of cols: ", ncol(get(i)), "\n")
}
# alternate way to replace with implicit loop
# FIXME
#sapply(outvars, function(x, y) write.csv(get(outvars), paste0(outdir, "/", outvars, ".csv")))
#*************************
# clear variables
rm(mcsm_data, gene_metadata, foo, drug, gene, gene_match, indir, merged_muts_u, meta_muts_u, na_count, df_ncols, outdir)
rm(pos_count_check)
#============================= end of script