fixed indentation
This commit is contained in:
parent
7eef463915
commit
0494765c9b
2 changed files with 14 additions and 23 deletions
|
@ -146,12 +146,12 @@ def MultModelsCl(input_df, target, skf_cv
|
||||||
, blind_test_df
|
, blind_test_df
|
||||||
, blind_test_target
|
, blind_test_target
|
||||||
, tts_split_type
|
, tts_split_type
|
||||||
, run_blind_test = True
|
|
||||||
|
|
||||||
, resampling_type = 'none' # default
|
, resampling_type = 'none' # default
|
||||||
, add_cm = True # adds confusion matrix based on cross_val_predict
|
, add_cm = True # adds confusion matrix based on cross_val_predict
|
||||||
, add_yn = True # adds target var class numbers
|
, add_yn = True # adds target var class numbers
|
||||||
, var_type = ['numerical', 'categorical','mixed']
|
, var_type = ['numerical', 'categorical','mixed']
|
||||||
|
, run_blind_test = True
|
||||||
, return_formatted_output = True):
|
, return_formatted_output = True):
|
||||||
|
|
||||||
'''
|
'''
|
||||||
|
@ -344,27 +344,13 @@ def MultModelsCl(input_df, target, skf_cv
|
||||||
mm_skf_scoresD[model_name]['bts_roc_auc'] = round(roc_auc_score(blind_test_target, bts_predict),2)
|
mm_skf_scoresD[model_name]['bts_roc_auc'] = round(roc_auc_score(blind_test_target, bts_predict),2)
|
||||||
mm_skf_scoresD[model_name]['bts_jcc'] = round(jaccard_score(blind_test_target, bts_predict),2)
|
mm_skf_scoresD[model_name]['bts_jcc'] = round(jaccard_score(blind_test_target, bts_predict),2)
|
||||||
#mm_skf_scoresD[model_name]['diff_mcc'] = train_test_diff_MCC
|
#mm_skf_scoresD[model_name]['diff_mcc'] = train_test_diff_MCC
|
||||||
#%%
|
|
||||||
# ADD more info: meta data related to input and blind and resampling
|
#ADD: target numbers for bts
|
||||||
|
yc2 = Counter(blind_test_target)
|
||||||
# target numbers: training
|
yc2_ratio = yc2[0]/yc2[1]
|
||||||
yc1 = Counter(target)
|
mm_skf_scoresD[model_name]['n_test_size'] = len(blind_test_df)
|
||||||
yc1_ratio = yc1[0]/yc1[1]
|
mm_skf_scoresD[model_name]['n_testY_ratio']= round(yc2_ratio,2)
|
||||||
|
|
||||||
# target numbers: test
|
|
||||||
yc2 = Counter(blind_test_target)
|
|
||||||
yc2_ratio = yc2[0]/yc2[1]
|
|
||||||
|
|
||||||
mm_skf_scoresD[model_name]['resampling'] = resampling_type
|
|
||||||
|
|
||||||
mm_skf_scoresD[model_name]['n_training_size'] = len(input_df)
|
|
||||||
mm_skf_scoresD[model_name]['n_trainingY_ratio'] = round(yc1_ratio, 2)
|
|
||||||
|
|
||||||
mm_skf_scoresD[model_name]['n_test_size'] = len(blind_test_df)
|
|
||||||
mm_skf_scoresD[model_name]['n_testY_ratio'] = round(yc2_ratio,2)
|
|
||||||
mm_skf_scoresD[model_name]['n_features'] = len(input_df.columns)
|
|
||||||
mm_skf_scoresD[model_name]['tts_split'] = tts_split_type
|
|
||||||
|
|
||||||
#return(mm_skf_scoresD)
|
#return(mm_skf_scoresD)
|
||||||
#============================
|
#============================
|
||||||
# Process the dict to have WF
|
# Process the dict to have WF
|
||||||
|
|
|
@ -45,7 +45,12 @@ for gene, drug in ml_gene_drugD.items():
|
||||||
print ('\nGene:', gene
|
print ('\nGene:', gene
|
||||||
, '\nDrug:', drug)
|
, '\nDrug:', drug)
|
||||||
gene_low = gene.lower()
|
gene_low = gene.lower()
|
||||||
gene_dataD[gene_low] = getmldata(gene, drug)
|
gene_dataD[gene_low] = getmldata(gene, drug
|
||||||
|
, data_combined_model = False # this means it doesn't include 'gene_name' as a feauture as a single gene-target shouldn't have it.
|
||||||
|
, use_or = False
|
||||||
|
, omit_all_genomic_features = False
|
||||||
|
, write_maskfile = False
|
||||||
|
, write_outfile = False)
|
||||||
|
|
||||||
for split_type in split_types:
|
for split_type in split_types:
|
||||||
for data_type in split_data_types:
|
for data_type in split_data_types:
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue