lots of per-plot configs

This commit is contained in:
Tanushree Tunstall 2022-08-22 21:56:13 +01:00
parent 13999a477d
commit 04253b961f
36 changed files with 5121 additions and 540 deletions

View file

@ -0,0 +1,271 @@
duetP
foldxP
deepddgP
dynamut2P
proveanP
snap2P
mLigP
mmLigP
posC_lig
ppi2P
posC_nca
peP
sensP
#========================
# Common title settings
#=========================
theme_georgia <- function(...) {
theme_gray(base_family = "sans", ...) +
theme(plot.title = element_text(face = "bold"))
}
title_theme <- calc_element("plot.title", theme_georgia())
###############################################################
common_bp_title = paste0("Sites <", DistCutOff, angstroms_symbol)
# extract common legends
# lig affinity
common_legend_outcome = get_legend(mLigP +
guides(color = guide_legend(nrow = 1)) +
theme(legend.position = "top"))
# stability
common_legend_outcome = get_legend(duetP +
guides(color = guide_legend(nrow = 1)) +
theme(legend.position = "top"))
# conservation
cons_common_legend_outcome = get_legend(snap2P +
guides(color = guide_legend(nrow = 1)) +
theme(legend.position = "top"))
###################################################################
#==================================
# Stability+Conservation: COMBINE
#==================================
tt_size = 10
#----------------------------
# stability and consv title
#----------------------------
tt_stab = ggdraw() +
draw_label(
paste0("Stability outcome"),
fontfamily = title_theme$family,
fontface = title_theme$face,
#size = title_theme$size
size = tt_size
)
tt_cons = ggdraw() +
draw_label(
paste0("Conservation outcome"),
fontfamily = title_theme$family,
fontface = title_theme$face,
size = tt_size
)
#----------------------
# Output plot
#-----------------------
stab_cons_CLP = paste0(outdir_images
,tolower(gene)
,"_stab_cons_BP_CLP.png")
print(paste0("plot filename:", stab_cons_CLP))
png(stab_cons_CLP, units = "in", width = 10, height = 5, res = 300 )
cowplot::plot_grid(
cowplot::plot_grid(
cowplot::plot_grid(
tt_stab,
common_legend_outcome,
nrow = 2
),
cowplot::plot_grid(
duetP,
foldxP,
deepddgP,
dynamut2P,
nrow = 1,
labels = c("A", "B", "C", "D"),
label_size = 12),
nrow = 2,
rel_heights=c(1,10)
),
NULL,
cowplot::plot_grid(
cowplot::plot_grid(
cowplot::plot_grid(
tt_cons,
cons_common_legend_outcome,
nrow = 2
),
cowplot::plot_grid(
proveanP,
snap2P,
nrow=1,
labels = c("E", "F"),
align = "hv"),
nrow = 2,
rel_heights = c(1, 10),
label_size = 12),
nrow=1
),
rel_widths = c(2,0.15,1),
nrow=1
)
dev.off()
#################################################################
#=======================================
# Affinity barplots: COMBINE ALL three
#========================================
ligT = paste0(common_bp_title, " ligand")
lig_affT = ggdraw() +
draw_label(
ligT,
fontfamily = title_theme$family,
fontface = title_theme$face,
#size = title_theme$size
size = 8
)
p1 = cowplot::plot_grid(cowplot::plot_grid(lig_affT
, common_legend_outcome
, nrow=2),
cowplot::plot_grid(mLigP, mmLigP, posC_lig
, nrow = 1
, rel_widths = c(1,1,1.8)
, align = "h"),
nrow = 2,
rel_heights = c(1,8)
)
p1
###########################################################
ncaT = paste0(common_bp_title, " Dist-NA")
nca_affT = ggdraw() +
draw_label(
ncaT,
fontfamily = title_theme$family,
fontface = title_theme$face,
#size = title_theme$size
size = 8
)
p2 = cowplot::plot_grid(cowplot::plot_grid(nca_affT
, common_legend_outcome
, nrow=2),
cowplot::plot_grid(nca_distP, posC_nca
, nrow = 1
, rel_widths = c(1.2,1.8)
, align = "h"),
nrow = 2,
rel_heights = c(1,8)
)
p2
###########################################################
# PE + All position count
peT_allT = ggdraw() +
draw_label(
paste0("All mutation sites"),
fontfamily = title_theme$family,
fontface = title_theme$face,
#size = title_theme$size
size = 8
)
p3 = cowplot::plot_grid(cowplot::plot_grid(peT_allT, nrow = 2
, rel_widths = c(1,3),axis = "lr"),
cowplot::plot_grid(
peP2, posC_all,
nrow = 2,
rel_widths = c(1,1),
align = "v",
axis = "lr",
rel_heights = c(1,8)
),
rel_heights = c(1,18),
nrow = 2,axis = "lr")
p3
#===============
# Final combine
#===============
w = 11.79
h = 3.5
mut_impact_CLP = paste0(outdir_images
,tolower(gene)
,"_mut_impactCLP.png")
#svg(affP, width = 20, height = 5.5)
print(paste0("plot filename:", mut_impact_CLP))
png(mut_impact_CLP, units = "in", width = w, height = h, res = 300 )
cowplot::plot_grid(p1, p2
#, p3
, nrow = 1
, labels = "AUTO"
, label_size = 12
, rel_widths = c(3,2,2)
#, rel_heights = c(1)
)
dev.off()
##################################################
sensP
consurfP
#=================
# Combine sensitivity + ConSurf
# or ConSurf
#=================
w = 3
h = 3
# sens_conP = paste0(outdir_images
# ,tolower(gene)
# ,"_sens_cons_CLP.png")
#
# print(paste0("plot filename:", sens_conP))
# png(sens_conP, units = "in", width = w, height = h, res = 300 )
#
# cowplot::plot_grid(sensP, consurfP,
# nrow = 2,
# rel_heights = c(1, 1.5)
# )
#
# dev.off()
conCLP = paste0(outdir_images
,tolower(gene)
,"_consurf_BP.png")
print(paste0("plot filename:", conCLP))
png(conCLP, units = "in", width = w, height = h, res = 300 )
consurfP
dev.off()
#================================
# Sensitivity mutation numbers: geom_tile
#================================
sensCLP = paste0(outdir_images
,tolower(gene)
,"_sensN_tile.png")
print(paste0("plot filename:", sensCLP))
png(sensCLP, units = "in", width = 1, height = 1, res = 300 )
sensP
dev.off()
#================================
# Sensitivity SITE numbers: geom_tile
#================================
sens_siteCLP = paste0(outdir_images
,tolower(gene)
,"_sens_siteC_tile.png")
print(paste0("plot filename:", sens_siteCLP))
png(sens_siteCLP, units = "in", width = 1, height = 1, res = 300 )
sens_siteP
dev.off()
###########################################################

View file

@ -0,0 +1,320 @@
#################
# Numbers
##################
#all_dm_om_df = dm_om_wf_lf_data(df = merged_df3, gene = gene)
all_dm_om_df = dm_om_wf_lf_data(df = df3, gene = gene)
# lf_duet = all_dm_om_df[['lf_duet']]
# table(lf_duet$param_type)
################################################################
#======================
# Data: Dist+Genomics
#======================
lf_dist_genP = all_dm_om_df[['lf_dist_gen']]
wf_dist_genP = all_dm_om_df[['wf_dist_gen']]
levels(lf_dist_genP$param_type)
#lf_dist_genP$param_type <- factor(lf_dist_genP$param_type, levels=c("Log10(MAF)", "Lig Dist(Å)", "PPI Dist(Å)"))
table(lf_dist_genP$param_type)
genomics_param = c("Log10(MAF)")
dist_genP = lf_bp2(lf_dist_genP
#, p_title
, violin_quantiles = c(0.5), monochrome = F)
dist_genP
#-------------------
# Genomics data plot
#-------------------
genomics_dataP = lf_dist_genP[lf_dist_genP$param_type%in%genomics_param,]
genomics_dataP$param_type = factor(genomics_dataP$param_type)
table(genomics_dataP$param_type)
genomicsP = lf_bp2(genomics_dataP
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F)
genomicsP
#check
wilcox.test(wf_dist_genP$`Log10(MAF)`[wf_dist_genP$mutation_info_labels=="R"]
, wf_dist_genP$`Log10(MAF)`[wf_dist_genP$mutation_info_labels=="S"], paired = FALSE)
tapply(wf_dist_genP$`Log10(MAF)`, wf_dist_genP$mutation_info_labels, summary)
#-------------------
# Distance data plot:
#--------------------
# not genomics
dist_dataP = lf_dist_genP[!lf_dist_genP$param_type%in%genomics_param,]
dist_dataP$param_type = factor(dist_dataP$param_type)
table(dist_dataP$param_type)
levels(dist_dataP$param_type)
# relevel factor to control ordering of appearance of plot
dist_dataP$param_type <-relevel(dist_dataP$param_type, "Lig Dist(Å)" )
table(dist_dataP$param_type)
levels(dist_dataP$param_type)
distanceP = lf_bp2(dist_dataP
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F)
distanceP
# check
wilcox.test(wf_dist_genP$`PPI Dist(Å)`[wf_dist_genP$mutation_info_labels=="R"]
, wf_dist_genP$`PPI Dist(Å)`[wf_dist_genP$mutation_info_labels=="S"], paired = FALSE)
wilcox.test(wf_dist_genP$`Lig Dist(Å)`[wf_dist_genP$mutation_info_labels=="R"]
, wf_dist_genP$`Lig Dist(Å)`[wf_dist_genP$mutation_info_labels=="S"], paired = FALSE)
wilcox.test(wf_dist_genP$`NA Dist(Å)`[wf_dist_genP$mutation_info_labels=="R"]
, wf_dist_genP$`NA Dist(Å)`[wf_dist_genP$mutation_info_labels=="S"], paired = FALSE)
tapply(wf_dist_genP$`PPI Dist(Å)`, wf_dist_genP$mutation_info_labels, summary)
tapply(wf_dist_genP$`Lig Dist(Å)`, wf_dist_genP$mutation_info_labels, summary)
#-------------------
# Distance data plot: LigDist
#--------------------
levels(dist_dataP$param_type)[[1]]
#Lig Dist(Å), PPI Dist(Å)
dist_data_lig = dist_dataP[dist_dataP$param_type%in%c(levels(dist_dataP$param_type)[[1]]),]
dist_data_lig$param_type = factor(dist_data_lig$param_type)
table(dist_data_lig$param_type)
levels(dist_data_lig$param_type)
distanceP_lig = lf_bp2(dist_data_lig
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F)
distanceP_lig
if (tolower(gene)%in%geneL_ppi2){
#-------------------
# Distance data plot: LigDist
#--------------------
levels(dist_dataP$param_type)[[2]]
#Lig Dist(Å), PPI Dist(Å)
dist_data_ppi2 = dist_dataP[dist_dataP$param_type%in%c(levels(dist_dataP$param_type)[[2]]),]
dist_data_ppi2$param_type = factor(dist_data_ppi2$param_type)
table(dist_data_ppi2$param_type)
levels(dist_data_ppi2$param_type)
distanceP_ppi2 = lf_bp2(dist_data_ppi2
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F)
distanceP_ppi2
}
if (tolower(gene)%in%geneL_na){
#-------------------
# Distance data plot: NADist
#--------------------
levels(dist_dataP$param_type)[[2]]
#Lig Dist(Å), PPI Dist(Å)
dist_data_na = dist_dataP[dist_dataP$param_type%in%c(levels(dist_dataP$param_type)[[2]]),]
dist_data_na$param_type = factor(dist_data_na$param_type)
table(dist_data_na$param_type)
levels(dist_data_na$param_type)
distanceP_na = lf_bp2(dist_data_na
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F)
distanceP_na
}
#==============
# Plot:DUET
#==============
lf_duetP = all_dm_om_df[['lf_duet']]
#lf_duetP = lf_duet[!lf_duet$param_type%in%c(static_colsP),]
table(lf_duetP$param_type)
lf_duetP$param_type = factor(lf_duetP$param_type)
table(lf_duetP$param_type)
duetP = lf_bp2(lf_duetP
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F
, dot_transparency = 0.2)
#==============
# Plot:FoldX
#==============
lf_foldxP = all_dm_om_df[['lf_foldx']]
#lf_foldxP = lf_foldx[!lf_foldx$param_type%in%c(static_colsP),]
table(lf_foldxP$param_type)
lf_foldxP$param_type = factor(lf_foldxP$param_type)
table(lf_foldxP$param_type)
foldxP = lf_bp2(lf_foldxP
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F
, dot_transparency = 0.1)
#==============
# Plot:DeepDDG
#==============
lf_deepddgP = all_dm_om_df[['lf_deepddg']]
#lf_deepddgP = lf_deepddg[!lf_deepddg$param_type%in%c(static_colsP),]
table(lf_deepddgP$param_type)
lf_deepddgP$param_type = factor(lf_deepddgP$param_type)
table(lf_deepddgP$param_type)
deepddgP = lf_bp2(lf_deepddgP
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F
, dot_transparency = 0.2)
deepddgP
#==============
# Plot: Dynamut2
#==============
lf_dynamut2P = all_dm_om_df[['lf_dynamut2']]
#lf_dynamut2P = lf_dynamut2[!lf_dynamut2$param_type%in%c(static_colsP),]
table(lf_dynamut2P$param_type)
lf_dynamut2P$param_type = factor(lf_dynamut2P$param_type)
table(lf_dynamut2P$param_type)
dynamut2P = lf_bp2(lf_dynamut2P
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F
, dot_transparency = 0.2)
#==============
# Plot:ConSurf
#==============
lf_consurfP = all_dm_om_df[['lf_consurf']]
#lf_consurfP = lf_consurf[!lf_consurf$param_type%in%c(static_colsP),]
table(lf_consurfP$param_type)
lf_consurfP$param_type = factor(lf_consurfP$param_type)
table(lf_consurfP$param_type)
consurfP = lf_bp2(lf_consurfP
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F)
#==============
# Plot:PROVEAN
#==============
lf_proveanP = all_dm_om_df[['lf_provean']]
#lf_proveanP = lf_provean[!lf_provean$param_type%in%c(static_colsP),]
table(lf_proveanP$param_type)
lf_proveanP$param_type = factor(lf_proveanP$param_type)
table(lf_proveanP$param_type)
proveanP = lf_bp2(lf_proveanP
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F)
#==============
# Plot:SNAP2
#==============
lf_snap2P = all_dm_om_df[['lf_snap2']]
#lf_snap2P = lf_snap2[!lf_snap2$param_type%in%c(static_colsP),]
table(lf_snap2P$param_type)
lf_snap2P$param_type = factor(lf_snap2P$param_type)
table(lf_snap2P$param_type)
snap2P = lf_bp2(lf_snap2P
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F)
############################################################################
#================
# Plot: mCSM-lig
#================
lf_mcsm_ligP = all_dm_om_df[['lf_mcsm_lig']]
#lf_mcsm_ligP = lf_mcsm_lig[!lf_mcsm_lig$param_type%in%c(static_colsP),]
table(lf_mcsm_ligP$param_type)
lf_mcsm_ligP$param_type = factor(lf_mcsm_ligP$param_type)
table(lf_mcsm_ligP$param_type)
mcsmligP = lf_bp2(lf_mcsm_ligP
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F
, dot_transparency = 1)
#=================
# Plot: mmCSM-lig2
#=================
lf_mmcsm_lig2P = all_dm_om_df[['lf_mmcsm_lig2']]
#lf_mmcsm_lig2P = lf_mmcsm_lig2P[!lf_mmcsm_lig2P$param_type%in%c(static_colsP),]
table(lf_mmcsm_lig2P$param_type)
lf_mmcsm_lig2P$param_type = factor(lf_mmcsm_lig2P$param_type)
table(lf_mmcsm_lig2P$param_type)
mcsmlig2P = lf_bp2(lf_mmcsm_lig2P
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F
, dot_transparency = 1)
mcsmlig2P
#================
# Plot: mCSM-ppi2
#================
if (tolower(gene)%in%geneL_ppi2){
lf_mcsm_ppi2P = all_dm_om_df[['lf_mcsm_ppi2']]
#lf_mcsm_ppi2P = lf_mcsm_ppi2[!lf_mcsm_ppi2$param_type%in%c(static_colsP),]
table(lf_mcsm_ppi2P$param_type)
lf_mcsm_ppi2P$param_type = factor(lf_mcsm_ppi2P$param_type)
table(lf_mcsm_ppi2P$param_type)
mcsmppi2P = lf_bp2(lf_mcsm_ppi2P
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F
, dot_transparency = 1)
}
#==============
# Plot: mCSM-NA
#==============
if (tolower(gene)%in%geneL_na){
lf_mcsm_naP = all_dm_om_df[['lf_mcsm_na']]
#lf_mcsm_naP = lf_mcsm_na[!lf_mcsm_na$param_type%in%c(static_colsP),]
table(lf_mcsm_naP$param_type)
lf_mcsm_naP$param_type = factor(lf_mcsm_naP$param_type)
table(lf_mcsm_naP$param_type)
mcsmnaP = lf_bp2(lf_mcsm_naP
#, p_title = ""
, violin_quantiles = c(0.5), monochrome = F
, dot_transparency = 1)
}
######################################
# Outplot with stats
######################################
# outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
#
# dm_om_combinedP = paste0(outdir_images
# ,tolower(gene)
# ,"_dm_om_all.svg" )
#
# cat("DM OM plots with stats:", dm_om_combinedP)
# svg(dm_om_combinedP, width = 32, height = 18)
# cowplot::plot_grid(
# cowplot::plot_grid(duetP, foldxP, deepddgP, dynamut2P, genomicsP, distanceP
# , nrow=1
# , rel_widths = c(1/7, 1/7,1/7,1/7, 1/7, 1.75/7)),
# #, rel_widths = c(1/8, 1/8,1/8,1/8, 1/8, 2.75/8)), # for 3 distances
# cowplot::plot_grid(consurfP, proveanP, snap2P
# , mcsmligP
# , mcsmlig2P
# , mcsmppi2P
# #, mcsmnaP
# , nrow=1),
# nrow=2)
#
# dev.off()

View file

@ -0,0 +1,178 @@
#source("~/git/LSHTM_analysis/config/embb.R")
#source("~/git/LSHTM_analysis/scripts/plotting/plotting_colnames.R")
#source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
my_gg_pairs=function(plot_df, plot_title
, tt_args_size = 2.5
, gp_args_size = 2.5){
ggpairs(plot_df,
columns = 1:(ncol(plot_df)-1),
upper = list(
continuous = wrap('cor', # ggally_cor()
method = "spearman",
use = "pairwise.complete.obs",
title="ρ",
digits=2,
justify_labels = "centre",
#title_args=c(colour="black"),
title_args=c(size=tt_args_size),#2.5
group_args=c(size=gp_args_size)#2.5
)
),
lower = list(
continuous = wrap("points",
alpha = 0.7,
size=0.125),
combo = wrap("dot",
alpha = 0.7,
size=0.125)
),
aes(colour = factor(ifelse(dst_mode==0,
"S",
"R") ),
alpha = 0.5),
title=plot_title) +
scale_colour_manual(values = c("red", "blue")) +
scale_fill_manual(values = c("red", "blue")) #+
# theme(text = element_text(size=7,
# face="bold"))
}
DistCutOff = 10
###########################################################################
geneL_normal = c("pnca")
geneL_na = c("gid", "rpob")
geneL_ppi2 = c("alr", "embb", "katg", "rpob")
merged_df3 = as.data.frame(merged_df3)
corr_plotdf = corr_data_extract(merged_df3
, gene = gene
, drug = drug
, extract_scaled_cols = F)
aff_dist_cols = colnames(corr_plotdf)[grep("Dist", colnames(corr_plotdf))]
static_cols = c("Log10(MAF)"
, "Log10(OR)"
)
############################################################
#=============================================
# Creating masked df for affinity data
#=============================================
corr_affinity_df = corr_plotdf
#----------------------
# Mask affinity columns
#-----------------------
corr_affinity_df[corr_affinity_df["Lig-Dist"]>DistCutOff,"mCSM-lig"]=0
corr_affinity_df[corr_affinity_df["Lig-Dist"]>DistCutOff,"mmCSM-lig"]=0
if (tolower(gene)%in%geneL_ppi2){
corr_affinity_df[corr_affinity_df["PPI-Dist"]>DistCutOff,"mCSM-PPI2"]=0
}
if (tolower(gene)%in%geneL_na){
corr_affinity_df[corr_affinity_df["NCA-Dist"]>DistCutOff,"mCSM-NA"]=0
}
# count 0
#res <- colSums(corr_affinity_df==0)/nrow(corr_affinity_df)*100
unmasked_vals <- nrow(corr_affinity_df) - colSums(corr_affinity_df==0)
unmasked_vals
##########################################################
#================
# Stability
#================
corr_ps_colnames = c(static_cols
, "DUET"
, "FoldX"
, "DeepDDG"
, "Dynamut2"
, aff_dist_cols
, "dst_mode")
corr_df_ps = corr_plotdf[, corr_ps_colnames]
# Plot #1
plot_corr_df_ps = my_gg_pairs(corr_df_ps, plot_title="Stability estimates")
##########################################################
#================
# Conservation
#================
corr_conservation_cols = c( static_cols
, "ConSurf"
, "SNAP2"
, "PROVEAN"
#, aff_dist_cols
, "dst_mode"
)
corr_df_cons = corr_plotdf[, corr_conservation_cols]
# Plot #2
plot_corr_df_cons = my_gg_pairs(corr_df_cons, plot_title="Conservation estimates")
##########################################################
#================
# Affinity: lig, ppi and na as applicable
#================
#corr_df_lig = corr_plotdf[corr_plotdf["Lig-Dist"]<DistCutOff,]
common_aff_colnames = c("mCSM-lig"
, "mmCSM-lig")
if (tolower(gene)%in%geneL_normal){
aff_colnames = common_aff_colnames
}
if (tolower(gene)%in%geneL_ppi2){
aff_colnames = c(common_aff_colnames, "mCSM-PPI2")
}
if (tolower(gene)%in%geneL_na){
aff_colnames = c(common_aff_colnames, "mCSM-NA")
}
# building ffinal affinity colnames for correlation
corr_aff_colnames = c(static_cols
, aff_colnames
, "dst_mode") # imp
corr_df_aff = corr_affinity_df[, corr_aff_colnames]
colnames(corr_df_aff)
# Plot #3
plot_corr_df_aff = my_gg_pairs(corr_df_aff,
plot_title="Affinity estimates",
tt_args_size = 4,
gp_args_size = 4)
#=============
# combine
#=============
#png("/home/tanu/tmp/gg_pairs_all.png", height = 6, width=11.75, unit="in",res=300)
png(paste0(outdir_images
,tolower(gene)
,"_CorrAB.png"), height = 7, width=11.75, unit="in",res=300)
cowplot::plot_grid(ggmatrix_gtable(plot_corr_df_ps),
ggmatrix_gtable(plot_corr_df_cons),
# ggmatrix_gtable(plot_corr_df_aff),
# nrow=1, ncol=3, rel_heights = 7,7,3
nrow=1,
rel_widths = c(1.5,1),
labels = "AUTO",
label_size = 12)
dev.off()
# affinity corr
#png("/home/tanu/tmp/gg_pairs_affinity.png", height =7, width=7, unit="in",res=300)
png(paste0(outdir_images
,tolower(gene)
,"_CorrC.png"), height =7, width=7, unit="in",res=300)
cowplot::plot_grid(ggmatrix_gtable(plot_corr_df_aff),
labels = "C",
label_size = 12)
dev.off()