changed blind_test_input_df to blind_test_df in MultModelsCl
This commit is contained in:
parent
bc12dbd7c2
commit
0350784d52
114 changed files with 107251 additions and 863011 deletions
|
@ -101,7 +101,7 @@ jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
|||
#%%
|
||||
# Multiple Classification - Model Pipeline
|
||||
def MultModelsCl(input_df, target, skf_cv
|
||||
, blind_test_input_df
|
||||
, blind_test_df
|
||||
, blind_test_target
|
||||
, add_cm = True # adds confusion matrix based on cross_val_predict
|
||||
, add_yn = True # adds target var class numbers
|
||||
|
@ -155,32 +155,32 @@ def MultModelsCl(input_df, target, skf_cv
|
|||
, ('Logistic RegressionCV' , LogisticRegressionCV(**rs) )
|
||||
, ('Gaussian NB' , GaussianNB() )
|
||||
, ('Naive Bayes' , BernoulliNB() )
|
||||
# , ('K-Nearest Neighbors' , KNeighborsClassifier() )
|
||||
# , ('SVC' , SVC(**rs) )
|
||||
# , ('MLP' , MLPClassifier(max_iter = 500, **rs) )
|
||||
# , ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
||||
# , ('Extra Trees' , ExtraTreesClassifier(**rs) )
|
||||
# , ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
||||
# , ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000 ) )
|
||||
# , ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5
|
||||
# , n_estimators = 1000
|
||||
# , bootstrap = True
|
||||
# , oob_score = True
|
||||
# , **njobs
|
||||
# , **rs
|
||||
# , max_features = 'auto') )
|
||||
# , ('XGBoost' , XGBClassifier(**rs, verbosity = 0, use_label_encoder =False) )
|
||||
# , ('LDA' , LinearDiscriminantAnalysis() )
|
||||
# , ('Multinomial' , MultinomialNB() )
|
||||
# , ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
|
||||
# , ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
|
||||
# , ('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
|
||||
# , ('Bagging Classifier' , BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True) )
|
||||
# , ('Gaussian Process' , GaussianProcessClassifier(**rs) )
|
||||
# , ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
|
||||
# , ('QDA' , QuadraticDiscriminantAnalysis() )
|
||||
# , ('Ridge Classifier' , RidgeClassifier(**rs) )
|
||||
# , ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 10) )
|
||||
, ('K-Nearest Neighbors' , KNeighborsClassifier() )
|
||||
, ('SVC' , SVC(**rs) )
|
||||
, ('MLP' , MLPClassifier(max_iter = 500, **rs) )
|
||||
, ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
||||
, ('Extra Trees' , ExtraTreesClassifier(**rs) )
|
||||
, ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
||||
, ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000 ) )
|
||||
, ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5
|
||||
, n_estimators = 1000
|
||||
, bootstrap = True
|
||||
, oob_score = True
|
||||
, **njobs
|
||||
, **rs
|
||||
, max_features = 'auto') )
|
||||
, ('XGBoost' , XGBClassifier(**rs, verbosity = 0, use_label_encoder =False) )
|
||||
, ('LDA' , LinearDiscriminantAnalysis() )
|
||||
, ('Multinomial' , MultinomialNB() )
|
||||
, ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
|
||||
, ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
|
||||
, ('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
|
||||
, ('Bagging Classifier' , BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True) )
|
||||
, ('Gaussian Process' , GaussianProcessClassifier(**rs) )
|
||||
, ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
|
||||
, ('QDA' , QuadraticDiscriminantAnalysis() )
|
||||
, ('Ridge Classifier' , RidgeClassifier(**rs) )
|
||||
, ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 10) )
|
||||
]
|
||||
|
||||
mm_skf_scoresD = {}
|
||||
|
@ -293,9 +293,9 @@ def MultModelsCl(input_df, target, skf_cv
|
|||
# Blind test: BTS results
|
||||
#=========================
|
||||
# Build the final results with all scores for the model
|
||||
#bts_predict = gscv_fs.predict(blind_test_input_df)
|
||||
#bts_predict = gscv_fs.predict(blind_test_df)
|
||||
model_pipeline.fit(input_df, target)
|
||||
bts_predict = model_pipeline.predict(blind_test_input_df)
|
||||
bts_predict = model_pipeline.predict(blind_test_df)
|
||||
|
||||
bts_mcc_score = round(matthews_corrcoef(blind_test_target, bts_predict),2)
|
||||
print('\nMCC on Blind test:' , bts_mcc_score)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue