playing with MSA plots to allow filtering of positions, arghhh

This commit is contained in:
Tanushree Tunstall 2022-01-18 15:30:41 +00:00
parent 08bd8a2ee5
commit 00094f036a
6 changed files with 209 additions and 46 deletions

View file

@ -1,2 +1,8 @@
gene = "gid" gene = "gid"
drug = "streptomycin" drug = "streptomycin"
rna_bind_aa_pos = c(96, 97, 118, 163)
bin_aa_pos = c(48, 51, 137, 200)
active_aa_pos = c(rna_bind_aa_pos, bin_aa_pos)
#rna_site = G518

View file

@ -20,33 +20,116 @@
LogoPlotMSA <- function(msaSeq_mut LogoPlotMSA <- function(msaSeq_mut
, msaSeq_wt , msaSeq_wt
, plot_positions
, msa_method = 'bits' # or probability , msa_method = 'bits' # or probability
, my_logo_col = "chemistry" , my_logo_col = "chemistry"
, x_lab = "Wild-type position" , x_lab = "Wild-type position"
, y_lab = "Count" , y_lab = ""
, x_ats = 13 # text size , x_ats = 13 # text size
, x_tangle = 90 # text angle , x_tangle = 90 # text angle
, y_ats = 13 , y_ats = 13
, y_tangle = 0 , y_tangle = 0
, x_tts = 13 # title size , x_tts = 13 # title size
, y_tts = 13 , y_tts = 13
, leg_pos = "top" # can be top, left, right and bottom or c(0.8, 0.9) , leg_pos = "top" # can be top, left, right and bottom or c(0.8, 0.9)
, leg_dir = "horizontal" #can be vertical or horizontal , leg_dir = "horizontal" #can be vertical or horizontal
, leg_ts = 16 # leg text size , leg_ts = 16 # leg text size
, leg_tts = 16 # leg title size , leg_tts = 16 # leg title size
) )
{ {
############################################
# Data processing for logo plot for nsSNPS ############################################
############################################ # Data processing for logo plot for nsSNPS
###########################################
cat("\nLength of MSA", length(msaSeq_mut)
, "\nlength of WT seq:", length(msaSeq_wt))
if(missing(plot_positions)){
#if(is.null(plot_positions)){
cat("\nPlotting entire MSA")
msa_seq_plot = msaSeq_mut
wt_seq_plot = msaSeq_wt
} else {
cat("\nUser specified plotting positions for MSA:"
, "These are:", plot_positions)
cat("\nLength of MSA", nrow(msaSeq_mut) #-----------
, "\nlength of WT seq:", nrow(msaSeq_wt)) # MSA: mut
#-----------
cat("\nGenerating MSA: filtered positions")
msa_interim = sapply(msaSeq_mut, function(x) unlist(strsplit(x,"")))
###################################### if (any(is.na(msa_interim[plot_positions]))){
# Generating plots for muts and wt cat("Plot_positions selected:", length(plot_positions))
##################################### i_ofr = plot_positions[is.na(msa_interim[plot_positions])]
cat("\nIndex out of range: 1 or more"
, "\nThese are:", i_ofr
, "\nOmitting these and proceeding...")
i_extract = na.omit(msa_interim[plot_positions])
cat("\nFinal positions being plottted:", length(i_extract)
, "\nNo. of positions dropped from request:", length(i_ofr))
}else{
cat("\nAll positions within range"
, "\nProceeing with generating requested position MSA seqs...")
i_extract = plot_positions
}
matP1 = msa_interim[i_extract, 1:ncol(msa_interim)]
dfP1 = data.frame(t(matP1))
names(dfP1) = i_extract
cols_to_paste = names(dfP1)
dfP1['chosen_seq'] = apply( dfP1[ , cols_to_paste]
, 1
, paste, sep = ''
, collapse = "")
msa_seq_plot = dfP1$chosen_seq
#-----------
# WT: fasta
#-----------
cat("\nGenerating WT fasta: filtered positions")
wt_interim = sapply(msaSeq_wt, function(x) unlist(strsplit(x,"")))
if (any(is.na(wt_interim[plot_positions]))){
cat("Plot_positions selected:", length(plot_positions))
i2_ofr = plot_positions[is.na(wt_interim[plot_positions])]
cat("\nIndex out of range: 1 or more"
, "\nThese are:", i2_ofr
, "\nOmitting these and proceeding...")
i2_extract = na.omit(wt_interim[plot_positions])
cat("\nFinal positions being plottted:", length(i2_extract)
, "\nNo. of positions dropped from request:", length(i2_ofr))
}else{
cat("\nAll positions within range"
, "\nProceeing with generating requested position MSA seqs...")
i2_extract = plot_positions
}
matP2 = wt_interim[i_extract, 1:ncol(wt_interim)]
dfP2 = data.frame(t(matP2))
names(dfP2) = i2_extract
cols_to_paste_P2 = names(dfP2)
dfP2['chosen_seq'] = apply( dfP2[ , cols_to_paste_P2]
, 1
, paste, sep = ''
, collapse = "")
wt_seq_plot = dfP2$chosen_seq
}
######################################
# Generating plots for muts and wt
#####################################
LogoPlotMSAL <- list() LogoPlotMSAL <- list()
if (my_logo_col %in% c('clustalx','taylor')) { if (my_logo_col %in% c('clustalx','taylor')) {
@ -78,12 +161,16 @@ LogoPlotMSA <- function(msaSeq_mut
#------------------- #-------------------
# Mutant logo plot # Mutant logo plot
#------------------- #-------------------
p0 = ggseqlogo(msaSeq_mut p0 = ggseqlogo(msa_seq_plot
#msaSeq_mut$V1
, facet = "grid" , facet = "grid"
, method = msa_method , method = msa_method
, col_scheme = my_logo_col , col_scheme = my_logo_col
, seq_type = 'aa') , seq_type = 'aa') +
scale_x_discrete(x_lab
, breaks = i_extract
, labels = i_extract
#, limits = min(i_extract): max(i_extract))
, limits = factor(i_extract))
# further customisation # further customisation
msa_mut_logo_P = p0 + theme(legend.position = leg_pos msa_mut_logo_P = p0 + theme(legend.position = leg_pos
@ -111,6 +198,7 @@ LogoPlotMSA <- function(msaSeq_mut
, plot.background = element_rect(fill = theme_bgc)) , plot.background = element_rect(fill = theme_bgc))
cat('\nDone: msa_mut_logo_P') cat('\nDone: msa_mut_logo_P')
#return(msa_mut_logoP) #return(msa_mut_logoP)
LogoPlotMSAL[['msa_mut_logoP']] <- msa_mut_logo_P LogoPlotMSAL[['msa_mut_logoP']] <- msa_mut_logo_P
@ -118,12 +206,16 @@ LogoPlotMSA <- function(msaSeq_mut
#--------------------------------- #---------------------------------
# Wild-type MSA: gene_fasta file # Wild-type MSA: gene_fasta file
#--------------------------------- #---------------------------------
p1 = ggseqlogo(msaSeq_wt p1 = ggseqlogo(wt_seq_plot
#msaSeq_wt$V1
, facet = "grid" , facet = "grid"
, method = msa_method , method = msa_method
, col_scheme = my_logo_col , col_scheme = my_logo_col
, seq_type = 'aa') , seq_type = 'aa')+
scale_x_discrete(x_lab
, breaks = i_extract
, labels = i_extract
#, limits = min(i_extract): max(i_extract))
, limits = factor(i_extract))
# further customisation # further customisation
msa_wt_logo_P = p1 + msa_wt_logo_P = p1 +

View file

@ -2,10 +2,10 @@ source("~/git/LSHTM_analysis/config/gid.R")
#source("~/git/LSHTM_analysis/config/pnca.R") # YES #source("~/git/LSHTM_analysis/config/pnca.R") # YES
#--------------------------------------------------- #---------------------------------------------------
# FIXME # FIXME
source("~/git/LSHTM_analysis/config/alr.R") # source("~/git/LSHTM_analysis/config/alr.R")
source("~/git/LSHTM_analysis/config/embb.R") # source("~/git/LSHTM_analysis/config/embb.R")
source("~/git/LSHTM_analysis/config/katg.R") # source("~/git/LSHTM_analysis/config/katg.R")
source("~/git/LSHTM_analysis/config/rpob.R") # source("~/git/LSHTM_analysis/config/rpob.R")
#--------------------------------------------------- #---------------------------------------------------
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R") source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
@ -72,16 +72,25 @@ LogoPlotSnps(plot_df = merged_df3
# wild-type and mutant aa # wild-type and mutant aa
# script: logoP_msa.R # script: logoP_msa.R
######################################## ########################################
# msa1 = read.csv("/home/tanu/git/Data/cycloserine/output/alr_msa.csv", header = F) # BOTH WORK
# head(msa1) #LogoPlotMSA(msa_seq, wt_seq)
# msa_seq= msa1$V1
# head(msa_seq) LogoPlotMSA(msaSeq_mut = msa_seq
# , msaSeq_wt = wt_seq
# msa2 = read.csv("/home/tanu/git/Data/cycloserine/input/alr.1fasta", header = F) , msa_method = 'bits' # or probability
# head(msa2) , my_logo_col = "chemistry"
# wt_seq = msa2$V1 #, plot_positions = active_aa_pos
# head(wt_seq) , plot_positions
# , x_lab = "Wild-type position"
# # BOTH WORK , y_lab = ""
# LogoPlotMSA(msa_seq, wt_seq) , x_ats = 13 # text size
# LogoPlotMSA(msa1, msa2) , x_tangle = 90 # text angle
, y_ats = 13
, y_tangle = 0
, x_tts = 13 # title size
, y_tts = 13
, leg_pos = "top" # can be top, left, right and bottom or c(0.8, 0.9)
, leg_dir = "horizontal" #can be vertical or horizontal
, leg_ts = 16 # leg text size
, leg_tts = 16 # leg title size
)

View file

@ -110,9 +110,16 @@ merged_df3_comp = all_plot_dfs[[4]]
#################################################################### ####################################################################
#source(paste0(plot_script_path, "logo_data.R")) #source(paste0(plot_script_path, "logo_data.R"))
#s1 = c("\nSuccessfully sourced logo_data.R") #s1 = c("\nSuccessfully sourced logo_data.R")
#cat(s1) #cat(s1)
# input data is merged_df3
# so repurposed it into a function so params can be passed instead to generate
# data required for plotting.
# Moved "logo_data.R" to redundant/
source(paste0(plot_script_path, "logo_data_msa.R"))
s1 = c("\nSuccessfully sourced logo_data_msa.R")
cat(s1)
#################################################################### ####################################################################
# Data for DM OM Plots: Long format dfs # Data for DM OM Plots: Long format dfs
@ -173,4 +180,4 @@ rm(c1
, vars0 , vars0
, vars1 , vars1
, vars2 , vars2
, vars3) , vars3)

View file

@ -0,0 +1,49 @@
#=================================================
# Data for Logo MSA plots
#=================================================
cat("\n=========================================="
, "\nLogo MSA Plots Data: ALL params"
, "\n=========================================")
#msa1 = read.csv("/home/tanu/git/Data/cycloserine/output/gid_msa.csv", header = F)
#head(msa1)
#msa_seq= msa1$V1
#head(msa_seq)
#msa2 = read.csv("/home/tanu/git/Data/cycloserine/input/gid.1fasta", header = F)
#head(msa2)
#wt_seq = msa2$V1
#head(wt_seq)
# BOTH WORK
#LogoPlotMSA(msa_seq, wt_seq)
#LogoPlotMSA(msa1, msa2)
#####################################
#================
# MSA file: muts
#================
in_filename_msa = paste0(tolower(gene), "_msa.csv")
infile_msa = paste0(outdir, "/", in_filename_msa)
cat("\nInput file for MSA plots: ", infile_msa, "\n")
msa1 = read.csv(infile_msa, header = F)
head(msa1)
cat("\nLength of MSA:", nrow(msa1))
msa_seq = msa1$V1
head(msa_seq)
#================
# fasta file: wt
#================
in_filename_fasta = paste0(tolower(gene), ".1fasta")
infile_fasta = paste0(indir, "/", in_filename_fasta)
cat("\nInput fasta file for WT: ", infile_fasta, "\n")
msa2 = read.csv(infile_fasta, header = F)
head(msa2)
cat("\nLength of WT fasta:", nrow(msa2))
wt_seq = msa2$V1
head(wt_seq)