Dashboards/ml/global.R
2022-10-12 20:11:19 +01:00

418 lines
14 KiB
R

library(shiny)
library(shinyjs)
library(shinydashboard)
#library("wesanderson") # ayyyy lmao hipster af
library(dplyr)
library(ggplot2)
library(grid) # for the info box
library(plotly)
library(shinycssloaders)
# make shiny non-stupid
#options(shiny.launch.browser = FALSE) # i am a big girl and can tie my own laces
#options(shiny.port = 8000) # don't change the port every time
#options(shiny.host = '0.0.0.0') # This means "listen to all addresses on all interfaces"
#options(width=120)
#options(DT.options = list(scrollX = TRUE))
# FIXME: get rid of this hardcoded thing which i'm only reading in to have resampling types ahead of loading the real files
if (interactive()){
print("Interactive Session, using home directories")
data_dir = "~/git/"
} else {
data_dir = "/srv/shiny-server/git/"
}
thing = read.csv(paste0(data_dir, "Data/ml_combined/genes/pnca_70_30_actual.csv"))
# list of splits
split_type = c(
"cd_7030",
"cd_8020",
"cd_sl",
"none"
)
split_choicenames=c(
"70:30",
"80:20",
"Scaling law",
"CV thresholds"
)
split_file = c(
"_70_30_complete",
"_80_20_complete",
"_sl_complete",
"_none_complete"
)
split_file_FS = c(
"_70_30_complete",
"_80_20_complete",
"_sl_complete"
)
# necessary because the names will be wrong otherwise
split_map = data.frame(
files=c(
"_70_30_complete",
"_80_20_complete",
"_sl_complete",
"_none_complete"
),
splits=c(
"cd_7030",
"cd_8020",
"cd_sl",
"none"
)
)
colour_range=c("#605ca8", "#bebddb", "#221e70")
metadata_cols = c("n_training_size", "n_test_size", "n_trainingY_ratio", "n_testY_ratio", "resampling", "n_features")
# hardcoded list of drugs
drug = c("ethambutol", "isoniazid", "pyrazinamide", "rifampicin", "streptomycin")
drug_choicenames = c("EmbB-ethambutol", "KatG-isoniazid", "PncA-pyrazinamide", "RpoB-rifampicin", "GidB-streptomycin")
gene = c("embb", "katg", "pnca", "rpob", "gid")
combo = data.frame(drug, gene)
# Loader for per-gene CSVs
loaded_files=list()
for (x in gene) {
#x=tolower(x)
for (split in split_file){
filedata = paste0(x, split)
filename = paste0(data_dir,'LSHTM_ML/output/genes/',x,split,'.csv')
#print(c(filename))
#load_name=paste0(combo[gene==x,"drug"],'_',split_map['splits'][split_map['files']==split])
load_name=paste0(x,'_baselineC_',split_map['splits'][split_map['files']==split])
print(load_name)
# try() on its own is fine here because we don't need to do anything if it fails
try({loaded_files[[load_name]] = read.csv(filename)})
}
}
# Loader for per-gene Feature Selection CSVs
for (x in gene) {
#x=tolower(x)
for (split in split_file_FS){
filedata = paste0(x, split)
filename = paste0(data_dir,'LSHTM_ML/output/genes/',x,split,'_FS.csv')
#print(c(filename))
#load_name=paste0(combo[gene==x,"drug"],'_',split_map['splits'][split_map['files']==split])
load_name=paste0(x,'_baselineC_',split_map['splits'][split_map['files']==split], '_FS')
print(load_name)
# try() on its own is fine here because we don't need to do anything if it fails
try({loaded_files[[load_name]] = read.csv(filename)})
}
}
# Funky loader for combined data
for (x in gene) {
for (ac in c('_actual','_complete', '_FS')){
for (gene_count in c(1:6)){
load_name=paste0(gene_count, "genes_logo_skf_BT_", x, ac)
filename = paste0(data_dir,'LSHTM_ML/output/combined/',load_name, ".csv")
store_name=paste0(gene_count, "genes_logo_skf_BT_", x, ac)
# tryCatch is necessary here rather than try() because we need to do more
# manipulation afterwards (throwing away the column after loading)
load_successful=TRUE
tryCatch({temp_df = read.csv(filename)},error=function(e){load_successful<<-FALSE})
if (load_successful){
temp_df=temp_df[, 2:ncol(temp_df)] # throw away first column
loaded_files[[store_name]] = temp_df
print(paste0("loaded file: ", filename, "into var: ", store_name))
}
}
}
}
scores=c("F1", "ROC_AUC", "JCC", "MCC", "Accuracy", "Recall", "Precision")
#resample_types <<- unique(thing$resampling)
resample_types = c("none", "Random Oversampling", "Over+Under", "Random Undersampling", "SMOTE")
makeplot = function(x, # the DataFrame to plot
selection, # scoring method e.g. 'MCC'
resampler, # resampling type e.g. 'none'
display_infobox = TRUE, # display the infobox on top of the plot
display_combined = TRUE, # show stuff that only applies to "combined model" plots
gene = 'NOT SET', # used only for the info box
drug = 'NOT SET', # used only for the info box
combined_training_genes = '999' # used only for the info box
){
plot_data = x[x$resampling==resampler,]
y_coord_min = min(plot_data[selection], na.rm=TRUE)
#y_coord_min = min(plot_data[selection])
if (y_coord_min > 0) {
y_coord_min = 0
}
if (display_infobox) {
metadata=plot_data[1,colnames(plot_data)[colnames(plot_data) %in% metadata_cols]]
if (display_combined){
metatext=paste0("Train/Test: ",
metadata$n_training_size, "/", metadata$n_test_size,
"\nTrain/Test Target Ratio: ", metadata$n_trainingY_ratio, "/", metadata$n_testY_ratio,
"\nResampling: ", metadata$resampling,
"\nFeatures: ", metadata$n_features,
"\nGenes Trained: ", combined_training_genes
#"\nTest Gene: ", gene
)
} else {
metatext=paste0("Train/Test: ",
metadata$n_training_size, "/", metadata$n_test_size,
"\nTrain/Test Target Ratio: ", metadata$n_trainingY_ratio, "/", metadata$n_testY_ratio,
"\nResampling: ", metadata$resampling,
"\nFeatures: ", metadata$n_features,
"\nTest Gene: ", gene
)
}
#print(metatext)
grob <- grobTree(textGrob(metatext,
x=0.01,
y=0.80,
hjust=0,
gp=gpar(col="black")
)
)
}
ggplot(
data=plot_data, aes_string(
x="Model_name",
y=selection,
fill="source_data" #,
#group=selection
)
) +
geom_bar(
stat="identity"
, width = 0.75
, position=position_dodge2(padding=0.1, preserve='total', reverse=TRUE)
) +
coord_cartesian(ylim = c(y_coord_min, 1)) +
annotation_custom(grob) +
geom_text(aes_string(label=selection),
position=position_dodge(width = -0.75),
vjust = -0.5,
alpha=0.75,
fill="white"
) +
scale_color_manual(values = colour_range) +
scale_fill_manual(values = colour_range) +
# add little numbers for the BT bars only
labs(x="",y=paste(selection,"Score")) +
theme(
axis.text.x = element_text(angle = 90),
)
}
if (interactive()){
ui=dashboardPage(skin="purple",
dashboardHeader(title="Score Selector"),
dashboardSidebar(
radioButtons("combined_model",
label="Graph Model",
choiceNames = c("Combined", "Gene"),
choiceValues = c("combined", "gene"),
selected="gene"
),
# checkboxInput("combined_model",
# "Combined Model",
# value=FALSE
# ),
#),
# radioButtons("combined_data",
# label="Data Type",
# choiceNames = c("Complete", "Actual"),
# choiceValues = c("complete", "actual"),
# selected="complete"
# ),
radioButtons("combined_training_genes",
label="Training Genes",
choiceNames = c("Five", "Six"),
choiceValues = c("5","6"),
selected = "5"
),
radioButtons("drug_dropdown",
label="Drug",
choiceNames = drug_choicenames,
choices = drug,
selected="pyrazinamide"
),
radioButtons("split_dropdown",
label="Split",
choiceNames = split_choicenames,
choices = split_type,
selected="cd_7030"
),
radioButtons("score_dropdown",
label="Score",
choices = scores,
selected="MCC"
),
radioButtons("resample_dropdown",
label="Resampling",
choices = resample_types,
selected="none" # "none" is a value
)
),
dashboardBody(
useShinyjs(),
#plotlyOutput("plot", height = 800),
box(plotOutput("plot"), width="100%"),
box(plotOutput("feature_plot"), width="100%", title="Feature Selection"),
# %>% withSpinner(color="#0dc5c1"), # uncomment if you want the spinner
#downloadButton("save", "Download Plot"),
#DT::dataTableOut("plotdata"),
verbatimTextOutput("debug")
)
)
server=shinyServer(function(input, output, session) {
observeEvent({
input$combined_model
#input$combined_data
input$combined_training_genes
input$score_dropdown
input$resample_dropdown
input$drug_dropdown
input$split_dropdown
},{
combined_model = input$combined_model
selection = input$score_dropdown
resampler = input$resample_dropdown
selected_drug = input$drug_dropdown
selected_split = input$split_dropdown
#combined_data = input$combined_data
combined_training_genes = input$combined_training_genes
selected_gene = combo[combo$drug == selected_drug,'gene']
# if (combined_data == "FS"){
# updateRadioButtons(
# inputId="combined_training_genes",
# choiceNames = c("One", "Two"),
# choiceValues = c("1", "2"),
# selected = "2"
# )
# } else{
# updateRadioButtons(
# inputId="combined_training_genes",
# choiceNames = c("Five", "Six"),
# choiceValues = c("5","6"),
# selected = "5"
# )
# }
# hide stuff if selected
if(combined_model == "combined") {
#if(combined_model == TRUE) {
hide("split_dropdown")
#show("resample_dropdown")
#show("combined_data")
show("combined_training_genes")
#show("feature_plot")
filedata = paste0(combined_training_genes,
'genes_logo_skf_BT_',
selected_gene,
'_',
"complete"
#combined_data
)
feature_data = paste0(as.character(as.numeric(combined_training_genes)-4), # lol
'genes_logo_skf_BT_',
selected_gene,
'_FS'
)
print(filedata)
print('doing COMBINED plot')
output$plot <- renderPlot(
makeplot(
loaded_files[[filedata]],
selection,
resampler,
gene = combo[drug==selected_drug,"gene"],
combined_training_genes = combined_training_genes,
display_combined = TRUE
),height=450
)
print("doing FEATURE SELECTION plot corresponding to COMBINED plot")
output$feature_plot <- renderPlot(
makeplot(
loaded_files[[feature_data]],
selection,
"none", # always 'none' for Feature Selection
gene = combo[drug==selected_drug,"gene"],
combined_training_genes = combined_training_genes,
display_combined = TRUE
),height=450
)
# e.g.
# makeplot(loaded_files$`5genes_logo_skf_BT_pnca_actual`, "MCC", "none" , gene = 'foo', combined_training_genes = '1234', display_combined = TRUE)
} else {
show("split_dropdown")
#show("resample_dropdown")
#hide("combined_data")
hide("combined_training_genes")
#hide("feature_plot")
filedata = paste0(
combo[drug==selected_drug,"gene"],
'_baselineC_',
selected_split
)
feature_data = paste0(
combo[drug==selected_drug,"gene"],
'_baselineC_',
selected_split,
"_FS"
)
print(filedata)
print("doing GENE plot")
output$plot <- renderPlot(makeplot(loaded_files[[filedata]],
selection,
resampler,
gene = combo[drug==selected_drug,"gene"],
display_combined = FALSE
),height=450
)
print("doing FEATURE SELECTION plot corresponding to GENE plot")
output$feature_plot <- renderPlot(makeplot(loaded_files[[feature_data]],
selection,
"none",
gene = combo[drug==selected_drug,"gene"],
display_combined = FALSE
),height=450
)
}
# 6genes_logo_skf_BT_gid_complete
# filedata example for combined: 6genes_logo_skf_BT_embb_actual
# 6genes_logo_skf_BT_embb_combined
})
}
)
app <- shinyApp(ui, server)
runApp(app)
}