190 lines
6.3 KiB
R
190 lines
6.3 KiB
R
library(shiny)
|
|
library(shinyjs)
|
|
library(shinydashboard)
|
|
#library("wesanderson") # ayyyy lmao hipster af
|
|
library(dplyr)
|
|
library(ggplot2)
|
|
library(grid) # for the info box
|
|
library(plotly)
|
|
library(shinycssloaders)
|
|
|
|
# make shiny non-stupid
|
|
#options(shiny.launch.browser = FALSE) # i am a big girl and can tie my own laces
|
|
#options(shiny.port = 8000) # don't change the port every time
|
|
#options(shiny.host = '0.0.0.0') # This means "listen to all addresses on all interfaces"
|
|
#options(width=120)
|
|
#options(DT.options = list(scrollX = TRUE))
|
|
|
|
# FIXME: get rid of this hardcoded thing which i'm only reading in to have resampling types ahead of loading the real files
|
|
if (interactive()){
|
|
print("Interactive Session, using home directories")
|
|
data_dir = "~/git/"
|
|
} else {
|
|
data_dir = "/srv/shiny-server/git/"
|
|
}
|
|
|
|
thing = read.csv(paste0(data_dir, "Data/ml_combined/genes/pnca_70_30_actual.csv"))
|
|
|
|
# list of splits
|
|
split_type = c(
|
|
"cd_7030",
|
|
"cd_8020",
|
|
"cd_sl",
|
|
"none"
|
|
)
|
|
|
|
split_file = c(
|
|
"_70_30_complete",
|
|
"_80_20_complete",
|
|
"_sl_complete",
|
|
"_none_complete"
|
|
)
|
|
|
|
# necessary because the names will be wrong otherwise
|
|
split_map = data.frame(
|
|
files=c(
|
|
"_70_30_complete",
|
|
"_80_20_complete",
|
|
"_sl_complete",
|
|
"_none"
|
|
),
|
|
splits=c(
|
|
"cd_7030",
|
|
"cd_8020",
|
|
"cd_sl",
|
|
"none"
|
|
)
|
|
)
|
|
|
|
metadata_cols = c("n_training_size", "n_test_size", "n_trainingY_ratio", "n_testY_ratio", "resampling", "n_features")
|
|
|
|
# hardcoded list of drugs
|
|
drug = c("ethambutol", "isoniazid", "pyrazinamide", "rifampicin", "streptomycin")
|
|
gene = c("embb", "katg", "pnca", "rpob", "gid")
|
|
combo = data.frame(drug, gene)
|
|
|
|
# Loader for per-gene CSVs
|
|
#"/home/sethp/git/Data/ml_combined/genes/pnca_70_30_complete.csv"
|
|
loaded_files=list()
|
|
for (x in gene) {
|
|
#x=tolower(x)
|
|
for (split in split_file){
|
|
filedata = paste0(x, split)
|
|
filename = paste0(data_dir,'LSHTM_ML/output/genes/',x,split,'.csv')
|
|
|
|
#print(c(filename))
|
|
#load_name=paste0(combo[gene==x,"drug"],'_',split_map['splits'][split_map['files']==split])
|
|
load_name=paste0(x,'_baselineC_',split_map['splits'][split_map['files']==split])
|
|
#print(load_name)
|
|
# try() on its own is fine here because we don't need to do anything if it fails
|
|
try({loaded_files[[load_name]] = read.csv(filename)})
|
|
}
|
|
}
|
|
# Funky loader for combined data
|
|
for (x in gene) {
|
|
for (ac in c('_actual','_complete', '_FS')){
|
|
for (gene_count in c(1:6)){
|
|
load_name=paste0(gene_count, "genes_logo_skf_BT_", x, ac)
|
|
filename = paste0(data_dir,'LSHTM_ML/output/combined/',load_name, ".csv")
|
|
store_name=paste0(gene_count, "genes_logo_skf_BT_", x, ac)
|
|
# tryCatch is necessary here rather than try() because we need to do more
|
|
# manipulation afterwards (throwing away the column after loading)
|
|
load_successful=TRUE
|
|
tryCatch({temp_df = read.csv(filename)},error=function(e){load_successful<<-FALSE})
|
|
if (load_successful){
|
|
temp_df=temp_df[, 2:ncol(temp_df)] # throw away first column
|
|
loaded_files[[store_name]] = temp_df
|
|
print(paste0("loaded file: ", filename, "into var: ", store_name))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
scores=c("F1", "ROC_AUC", "JCC", "MCC", "Accuracy", "Recall", "Precision")
|
|
|
|
resample_types <<- unique(thing$resampling)
|
|
|
|
makeplot = function(x, # the DataFrame to plot
|
|
selection, # scoring method e.g. 'MCC'
|
|
resampler, # resampling type e.g. 'none'
|
|
display_infobox = TRUE, # display the infobox on top of the plot
|
|
display_combined = TRUE, # show stuff that only applies to "combined model" plots
|
|
gene = 'NOT SET', # used only for the info box
|
|
drug = 'NOT SET', # used only for the info box
|
|
combined_training_genes = '999' # used only for the info box
|
|
){
|
|
plot_data = x[x$resampling==resampler,]
|
|
y_coord_min = min(plot_data[selection])
|
|
|
|
if (y_coord_min > 0) {
|
|
y_coord_min = 0
|
|
}
|
|
if (display_infobox) {
|
|
metadata=t(plot_data[1,metadata_cols])
|
|
if (display_combined){
|
|
metatext=paste0("Train/Test: ",
|
|
metadata[1], "/", metadata[2],
|
|
"\nTrain/Test Target Ratio: ", metadata[3], "/", metadata[4],
|
|
"\nResampling: ", metadata[5],
|
|
"\nFeatures: ", metadata[6],
|
|
"\nGenes Trained: ", combined_training_genes,
|
|
"\nTest Gene: ", gene
|
|
)
|
|
} else {
|
|
metatext=paste0("Train/Test: ",
|
|
metadata[1], "/", metadata[2],
|
|
"\nTrain/Test Target Ratio: ", metadata[3], "/", metadata[4],
|
|
"\nResampling: ", metadata[5],
|
|
"\nFeatures: ", metadata[6],
|
|
"\nTest Gene: ", gene
|
|
)
|
|
}
|
|
|
|
#print(metatext)
|
|
|
|
grob <- grobTree(textGrob(metatext,
|
|
x=0.01,
|
|
y=0.90,
|
|
hjust=0,
|
|
gp=gpar(col="black")
|
|
)
|
|
)
|
|
}
|
|
ggplot(data=plot_data, aes_string(x="Model_name",
|
|
y=selection,
|
|
fill="source_data",
|
|
group=selection) ) +
|
|
geom_bar(stat="identity"
|
|
, width = 0.75
|
|
, position=position_dodge2(padding=0.1, preserve='total', reverse=TRUE)
|
|
) +
|
|
coord_cartesian(ylim = c(y_coord_min, 1)) +
|
|
scale_fill_manual(values = c("BT" = "#605ca8",
|
|
"CV" = "#bebddb") ) +
|
|
#guides=guide_legend(reverse=TRUE) +
|
|
annotation_custom(grob) +
|
|
# doesn't work with plotly but looks nice :-(
|
|
geom_label(aes_string(label=selection),
|
|
position=position_dodge(width = -0.75),
|
|
#position=position_dodge2(padding=0.1),
|
|
vjust = 1.5,
|
|
alpha=0.75,
|
|
fill="white"
|
|
|
|
) +
|
|
|
|
# works with plotly but i can't figure out the background yet
|
|
# geom_text(aes_string(label=selection, group=selection),
|
|
# position=position_dodge(width = -0.75),
|
|
# vjust = 1.5,
|
|
# alpha=0.75,
|
|
#
|
|
# ) +
|
|
|
|
# add little numbers for the BT bars only
|
|
labs(x="",y=paste(selection,"Score")) +
|
|
theme(
|
|
axis.text.x = element_text(angle = 90),
|
|
)
|
|
# ggplotly()
|
|
}
|