library(shinycssloaders) library(DT) library(NGLVieweR) library(hash) # FIXME This is slow and should happen *once only* #source("/srv/shiny-server/git/LSHTM_analysis/scripts/Header_TT.R") # FIXME: these are needed but slow to load every time # source("/srv/shiny-server/git/LSHTM_analysis/config/alr.R") # source("/srv/shiny-server/git/LSHTM_analysis/config/gid.R") # source("/srv/shiny-server/git/LSHTM_analysis/config/pnca.R") # source("/srv/shiny-server/git/LSHTM_analysis/config/rpob.R") # source("/srv/shiny-server/git/LSHTM_analysis/config/katg.R") # TODO: this is TEMPORARY and will shortly get replaced with a target picker # that'll reload everything when changing targets. the lapply() is *much* quicker # than previous approaches # system.time({ #source("/srv/shiny-server/git/LSHTM_analysis/scripts/Header_TT.R") load_target_globals=function(target){ cat(paste0("Reloading Target: ", target)) source(paste0("/srv/shiny-server/git/LSHTM_analysis/config/", target, ".R")) # load per-target config file invisible(assign(paste0(target, "_merged_df3"), read.csv(paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/",target,"-merged_df3.csv")), envir = .GlobalEnv)) invisible(assign(paste0(target, "_merged_df2"), read.csv(paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/",target,"-merged_df2.csv")), envir = .GlobalEnv)) invisible(assign(paste0(target, "_corr_df_m3_f"), read.csv(paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/",target,"-corr_df_m3_f.csv")), envir = .GlobalEnv)) invisible(assign(paste0(target, "_lin_lf"), read.csv(paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/",target,"-lin_lf.csv")), envir = .GlobalEnv)) invisible(assign(paste0(target, "_lin_wf"), read.csv(paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/",target,"-lin_wf.csv")), envir = .GlobalEnv)) lapply( c( "duet", "mcsm_lig", "foldx", "deepddg", "dynamut2", "consurf", "snap2", "provean", "dist_gen", "mcsm_ppi2"#, #"mcsm_na" ), function(x){ wf_filename=paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/", tolower(gene), "-wf_", x ,".csv") wf_var=paste0("wf_",x) if (file.exists(wf_filename)){ invisible(assign(wf_var,read.csv(wf_filename), envir = .GlobalEnv)) # FILTH } lf_filename=paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/", tolower(gene), "-lf_", x ,".csv") lf_var=paste0(target, "_lf_",x) if (file.exists(lf_filename)){ invisible(assign(lf_var,read.csv(lf_filename), envir = .GlobalEnv)) # FILTH } } ) } # populate target-specific *_unified_msa vars load_msa_global=function(gene){ drug=target_map[[gene]] in_filename_msa = paste0(tolower(gene), "_msa.csv") infile_msa = paste0("/srv/shiny-server/git/Data/", drug, "/output/", in_filename_msa) print(infile_msa) msa1 = read.csv(infile_msa, header = F) msa_seq = msa1$V1 infile_fasta = paste0("/srv/shiny-server/git/Data/", drug, "/input/", tolower(gene), "2_f2.fasta") print(infile_fasta) msa2 = read.csv(infile_fasta, header = F) wt_seq = msa2$V1 target_name=paste0(gene, '_unified_msa') #print(target_name) invisible(assign(target_name, list(msa_seq = msa_seq, wt_seq = wt_seq), envir = .GlobalEnv)) } #### Local Functions #### # Generate a conditionalPanel() for a given graph function and sidebar name combination generate_conditionalPanel = function(tab_name, plot_function, plot_df){ # e.g.: list("lin_count_bp_diversity", "Lineage diversity count") cond=paste0("input.sidebar == '", tab_name, "'") conditionalPanel(condition=cond, box( title=tab_name , status = "info" , width=NULL , plotOutput(plot_function , click = "plot_click") %>% withSpinner(color="#0dc5c1") # , plotOutput(plot_function, click = "plot_click") ) ) } # FIXME: passing in the per-plot params is broken lin_sc=function(x, all_lineages = F, ...){ lf_var = get(paste0(x,"_lin_lf")) wf_var = get(paste0(x,"_lin_wf")) cowplot::plot_grid(lin_count_bp_diversity(wf_var, all_lineages, ...), lin_count_bp(lf_var, all_lineages, ...)) } options(shiny.port = 8000) options(shiny.host = '0.0.0.0') # This means "listen to all addresses on all interfaces" options(shiny.launch.browser = FALSE) options(width=120) options(DT.options = list(scrollX = TRUE)) ################ STATIC GLOBALS ONLY ############## # never quite sure where "outdir" gets set :-| # using dataframes instead of lists lets us avoid use of map() plot_functions_df=data.frame( tab_name=c( "LogoP SNP", "Lineage Sample Count", "Site SNP count", "Stability SNP by site", "DM OM Plots", "Correlation", "Lineage Distribution", "Consurf", "LogoP OR", "LogoP ED" ), plot_function=c( "LogoPlotSnps", "lin_sc", "site_snp_count_bp", "bp_stability_hmap", "lf_bp2", "my_corr_pairs", "lineage_distP", "wideP_consurf3", "LogoPlotCustomH", "LogoPlotMSA" ), plot_df=c( "mutable_df3" , "lin_lf", "mutable_df3", "merged_df3" , "lf_duet" , "corr_df_m3_f", "merged_df2", "merged_df3", "merged_df2", "unified_msa" ) ) stability_boxes_df=data.frame( outcome_colname=c("duet_outcome", "foldx_outcome", "deepddg_outcome", "ddg_dynamut2_outcome", "mcsm_na_outcome", "mcsm_ppi2_outcome", "snap2_outcome", "consurf_outcome", "avg_stability_outcome"), stability_type=c( "DUET", "FoldX", "DeepDDG", "Dynamut2", "mCSM-NA", "mCSM-ppi2", "SNAP2", "Consurf", "Average" ), stability_colname=c( "duet_scaled", "foldx_scaled", "deepddg_scaled", "ddg_dynamut2_scaled", "mcsm_na_scaled", "mcsm_ppi2_scaled", "snap2_scaled", "consurf_scaled", "avg_stability_scaled" ) ) table_columns = c( "position", "mutationinformation", "sensitivity", "ligand_distance", "avg_lig_affinity", "avg_lig_affinity_outcome", "avg_stability", "avg_stability_outcome", "or_mychisq", "maf", "snap2_outcome", "consurf_outcome", "provean_outcome", "rsa", "kd_values" , "rd_values" ) logoPlotSchemes <- list("chemistry" , "taylor" , "hydrophobicity" , "clustalx") dm_om_methods = c("DUET ΔΔG" , "Consurf" , "Deepddg ΔΔG" , "Dynamut2 ΔΔG" , "FoldX ΔΔG" , "Ligand affinity (log fold change)" , "mCSM-NA affinity ΔΔG" , "SNAP2") dm_om_map = hash(c( "DUET ΔΔG" , "Consurf" , "Deepddg ΔΔG" , "Dynamut2 ΔΔG" , "FoldX ΔΔG" , "Ligand affinity (log fold change)" , "mCSM-NA affinity ΔΔG" , "SNAP2" ), c( "lf_duet" ,"lf_consurf" ,"lf_deepddg" ,"lf_dynamut2" ,"lf_foldx" ,"lf_mcsm_lig" ,"lf_mcsm_na" ,"lf_snap2" ) ) #### target_map: handy gene/drug mapping hash #### target_map = hash( c( "alr", "gid", "embb", "pnca", "rpob", "katg"), c( "cycloserine", "streptomycin", "ethambutol", "pyrazinamide", "rifampicin", "isoniazid") ) # load E V E R Y T H I N G lapply(c( "alr", "embb", "gid", "katg", "pnca", "rpob" ),function(x){ invisible(load_target_globals(x)) invisible(load_msa_global(x)) # turn off to speed up start time at the expense of "LogoP ED" } ) consurf_palette1 = c("0" = "yellow2" , "1" = "cyan1" , "2" = "steelblue2" , "3" = "cadetblue2" , "4" = "paleturquoise2" , "5" = "thistle3" , "6" = "thistle2" , "7" = "plum2" , "8" = "maroon" , "9" = "violetred2") consurf_palette2 = c("0" = "yellow2" , "1" = "forestgreen" , "2" = "seagreen3" , "3" = "palegreen1" , "4" = "darkseagreen2" , "5" = "thistle3" , "6" = "lightpink1" , "7" = "orchid3" , "8" = "orchid4" , "9" = "darkorchid4") # decreasing levels mess legend # consurf_colours_LEVEL = c( # "0" = rgb(1.00,1.00,0.59) # , "9" = rgb(0.63,0.16,0.37) # , "8" = rgb(0.94,0.49,0.67) # , "7" = rgb(0.98,0.78,0.86) # , "6" = rgb(0.98,0.92,0.96) # , "5" = rgb(1.00,1.00,1.00) # , "4" = rgb(0.84,0.94,0.94) # , "3" = rgb(0.65,0.86,0.90) # , "2" = rgb(0.29,0.69,0.75) # , "1" = rgb(0.04,0.49,0.51) # ) consurf_colours = c( "0" = rgb(1.00,1.00,0.59) , "1" = rgb(0.04,0.49,0.51) , "2" = rgb(0.29,0.69,0.75) , "3" = rgb(0.65,0.86,0.90) , "4" = rgb(0.84,0.94,0.94) , "5" = rgb(1.00,1.00,1.00) , "6" = rgb(0.98,0.92,0.96) , "7" = rgb(0.98,0.78,0.86) , "8" = rgb(0.94,0.49,0.67) , "9" = rgb(0.63,0.16,0.37) ) if (interactive()){ options(shiny.launch.browser = FALSE) # i am a big girl and can tie my own laces options(shiny.port = 8000) # don't change the port every time options(shiny.host = '0.0.0.0') # This means "listen to all addresses on all interfaces" options(width=120) options(DT.options = list(scrollX = TRUE)) ui=dashboardPage(skin="purple", dashboardHeader(title = "Drug/Target Explorer"), dashboardSidebar( sidebarMenu( id = "sidebar", selectInput( "switch_target", label="Switch to New Target", choices = c( "alr", "embb", "gid", "katg", "pnca", "rpob" ), selected="embb"), menuItem("LogoP SNP", tabName="LogoP SNP"), menuItem("Lineage Sample Count", tabName="Lineage Sample Count"), menuItem("Site SNP count", tabName="Site SNP count"), menuItem("Stability SNP by site", tabName="Stability SNP by site"), menuItem("DM OM Plots", tabName="DM OM Plots"), menuItem("Correlation", tabName="Correlation"), menuItem("Lineage Distribution", tabName="Lineage Distribution"), menuItem("Consurf", tabName="Consurf"), menuItem("LogoP OR", tabName="LogoP OR"), menuItem("LogoP ED", tabName="LogoP ED"), menuItem('Stability count', tabName='Stability count'), # These conditionalPanel()s make extra settings appear in the sidebar when needed conditionalPanel( condition="input.sidebar == 'LogoP SNP'", textInput( "omit_snp_count", "Omit SNPs", value = c(0), placeholder = "1,3,6" ) ), # NOTE: # I *think* we can cheat here slightly and use the min/max from # merged_df3[['position']] for everything because the various # dataframes for a given gene/drug combination have the # same range of positions. May need fixing, especially # if we get/shrink the imported data files to something # more reasonable. conditionalPanel( condition=" input.sidebar == 'LogoP SNP'|| input.sidebar == 'Stability SNP by site' || input.sidebar == 'Consurf' || input.sidebar == 'LogoP OR' || input.sidebar == 'Site SNP count'", sliderInput( "display_position_range" , "Display Positions" , min=1, max=150, value=c(1,150) # 150 is just a little less than the smallest pos_count ) ), conditionalPanel( condition="input.sidebar == 'LogoP ED'", sliderInput( "display_position_full_range" , "Display Positions" , min=1, max=150, value=c(1,150) ) ), conditionalPanel( condition=" input.sidebar == 'LogoP SNP' || input.sidebar == 'LogoP OR' || input.sidebar == 'LogoP ED'", selectInput( "logoplot_colour_scheme", label="Logo Plot Colour Scheme", choices = logoPlotSchemes, selected="chemistry" ) ), #conditionalPanel( # condition="input.sidebar == 'LogoP SNP' || input.sidebar == 'LogoP ED'|| input.sidebar == 'Consurf'", # numericInput( # "table_position" # , "Table Position", value=1 # ) #), conditionalPanel( condition="input.sidebar == 'Correlation'", selectInput( "corr_method", label="Correlation Method", choices = list("spearman", "pearson", "kendall"), selected="spearman" ) ), conditionalPanel( condition="input.sidebar == 'Correlation'", numericInput( "corr_lig_dist" , "Ligand Distance Cutoff (Å)", value=1 ) ), conditionalPanel( condition="input.sidebar == 'Correlation'", checkboxGroupInput( "corr_selected", "Parameters", choiceNames = c( "DeepDDG", "Dynamut2", "FoldX", "ConSurf"#, #"dst_mode" ), choiceValues = c( "DeepDDG", "Dynamut2", "FoldX", "ConSurf"#, #"dst_mode" ), selected = c( "DeepDDG", "Dynamut2", "FoldX", "ConSurf"#, #"dst_mode" ) ) ), conditionalPanel( condition="input.sidebar == 'DM OM Plots'", selectInput( "dm_om_param", label="Stability Parameter", choices = keys(dm_om_map), selected="SNAP2") ), # colour_categ conditionalPanel( condition="input.sidebar == 'Stability SNP by site'", selectInput( "stability_snp_param", label="Stability Parameter", choices = stability_boxes_df$stability_type, selected="Average") ), conditionalPanel( condition="input.sidebar == 'Stability SNP by site'", checkboxInput("reorder_custom_h", label="Reorder by SNP count", FALSE) ), conditionalPanel( condition="input.sidebar.match(/^Lineage.*/)", checkboxInput("all_lineages", label="All Lineages", FALSE) ), # an example of how you can match multiple things in frontend JS conditionalPanel( condition="input.sidebar == 'LogoP SNP' || input.sidebar =='Stability SNP by site' || input.sidebar =='Consurf' || input.sidebar =='LogoP OR' || input.sidebar =='LogoP ED'", actionButton("clear_ngl", "Clear Structure") ), conditionalPanel( condition="input.sidebar == 'LogoP SNP' || input.sidebar =='Stability SNP by site' || input.sidebar =='Consurf' || input.sidebar =='LogoP OR' || input.sidebar =='LogoP ED'", actionButton("test_ngl", "Test NGLViewR") )#, # downloadButton("save", # "Download Plot" # ) # actionButton( # "reload_target", # label="Reload Target\nData (slow!)" # ) ) ), body <- dashboardBody( tabItems( tabItem(tabName = "dashboard", h2("Dashboard tab content") ), tabItem(tabName = "widgets", h2("Widgets tab content") ) ), # creates a 'Conditional Panel' containing a plot object from each of our # ggplot plot functions (and its associated data frame) fluidRow(column(width=12, lapply(plot_functions_df$tab_name, function(x){ plot_function=plot_functions_df[ plot_functions_df$tab_name==x, "plot_function"] plot_df=plot_functions_df[ plot_functions_df$tab_name==x, "plot_df"] cat(paste0('\nCreating output: ', x)) generate_conditionalPanel(x, plot_function, plot_df) } ) ) ), #### fluidRow()s for "Stability Count" in the sidebar #### fluidRow( conditionalPanel( condition=" input.sidebar == 'LogoP SNP' || input.sidebar =='Stability SNP by site' || input.sidebar =='Consurf' || input.sidebar =='LogoP OR' || input.sidebar =='LogoP ED'", column(NGLVieweROutput("structure"), width=3 ) ), conditionalPanel( condition=" input.sidebar == 'LogoP SNP' || input.sidebar == 'Stability SNP by site' || input.sidebar == 'Site SNP count' || input.sidebar == 'Consurf' || input.sidebar == 'LogoP OR' || input.sidebar == 'LogoP ED'", column( DT::dataTableOutput('table'), width=9 ) ) ) ) ) server = function(input, output) { observeEvent({ input$combined_model input$combined_data input$combined_training_genes input$score_dropdown input$resample_dropdown input$drug_dropdown input$split_dropdown },{ combined_model = input$combined_model selection = input$score_dropdown resampler = input$resample_dropdown selected_drug = input$drug_dropdown selected_split = input$split_dropdown combined_data = input$combined_data combined_training_genes = input$combined_training_genes selected_gene = combo[combo$drug == selected_drug,'gene'] # hide stuff if selected if(combined_model == "combined") { #if(combined_model == TRUE) { hide("split_dropdown") hide("resample_dropdown") show("combined_data") show("combined_training_genes") filedata = paste0(combined_training_genes, 'genes_logo_skf_BT_', selected_gene, '_', combined_data ) print(filedata) print('doing COMBINED plot') output$plot <- renderPlot(makeplot(loaded_files[[filedata]], selection, "none", # always 'none' for combined plot gene = combo[drug==selected_drug,"gene"], combined_training_genes = combined_training_genes, display_combined = TRUE, ) ) # e.g. # makeplot(loaded_files$`5genes_logo_skf_BT_pnca_actual`, "MCC", "none" , gene = 'foo', combined_training_genes = '1234', display_combined = TRUE) } else { show("split_dropdown") show("resample_dropdown") hide("combined_data") hide("combined_training_genes") filedata = paste0(combo[drug==selected_drug,"gene"], '_baselineC_', selected_split ) print(filedata) print("doing GENE plot") output$plot <- renderPlot(makeplot(loaded_files[[filedata]], selection, resampler, gene = combo[drug==selected_drug,"gene"], display_combined = FALSE, ) ) } # 6genes_logo_skf_BT_gid_complete # filedata example for combined: 6genes_logo_skf_BT_embb_actual # 6genes_logo_skf_BT_embb_combined }) } app <- shinyApp(ui, server) runApp(app) }