library(shinycssloaders) library(DT) library(NGLVieweR) library(hash) load_target_globals=function(target){ cat(paste0("Reloading Target: ", target)) source(paste0("/srv/shiny-server/git/LSHTM_analysis/config/", target, ".R")) # load per-target config file invisible(assign(paste0(target, "_merged_df3"), read.csv(paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/",target,"-merged_df3.csv")), envir = .GlobalEnv)) invisible(assign(paste0(target, "_merged_df2"), read.csv(paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/",target,"-merged_df2.csv")), envir = .GlobalEnv)) invisible(assign(paste0(target, "_corr_df_m3_f"), read.csv(paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/",target,"-corr_df_m3_f.csv")), envir = .GlobalEnv)) invisible(assign(paste0(target, "_lin_lf"), read.csv(paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/",target,"-lin_lf.csv")), envir = .GlobalEnv)) invisible(assign(paste0(target, "_lin_wf"), read.csv(paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/",target,"-lin_wf.csv")), envir = .GlobalEnv)) lapply( c( "duet", "mcsm_lig", "foldx", "deepddg", "dynamut2", "consurf", "snap2", "provean", "dist_gen", "mcsm_ppi2"#, #"mcsm_na" ), function(x){ wf_filename=paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/", tolower(gene), "-wf_", x ,".csv") wf_var=paste0("wf_",x) if (file.exists(wf_filename)){ invisible(assign(wf_var,read.csv(wf_filename), envir = .GlobalEnv)) # FILTH } lf_filename=paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/", tolower(gene), "-lf_", x ,".csv") lf_var=paste0(target, "_lf_",x) if (file.exists(lf_filename)){ invisible(assign(lf_var,read.csv(lf_filename), envir = .GlobalEnv)) # FILTH } } ) } # populate target-specific *_unified_msa vars load_msa_global=function(gene){ drug=target_map[[gene]] in_filename_msa = paste0(tolower(gene), "_msa.csv") infile_msa = paste0("/srv/shiny-server/git/Data/", drug, "/output/", in_filename_msa) print(infile_msa) msa1 = read.csv(infile_msa, header = F) msa_seq = msa1$V1 infile_fasta = paste0("/srv/shiny-server/git/Data/", drug, "/input/", tolower(gene), "2_f2.fasta") print(infile_fasta) msa2 = read.csv(infile_fasta, header = F) wt_seq = msa2$V1 target_name=paste0(gene, '_unified_msa') #print(target_name) invisible(assign(target_name, list(msa_seq = msa_seq, wt_seq = wt_seq), envir = .GlobalEnv)) } #### Local Functions #### # Generate a conditionalPanel() for a given graph function and sidebar name combination generate_conditionalPanel = function(tab_name, plot_function, plot_df){ # e.g.: list("lin_count_bp_diversity", "Lineage diversity count") cond=paste0("input.sidebar == '", tab_name, "'") conditionalPanel(condition=cond, box( title=tab_name , status = "info" , width=NULL , plotOutput(plot_function , click = "plot_click") %>% withSpinner(color="#0dc5c1") # , plotOutput(plot_function, click = "plot_click") ) ) } # FIXME: passing in the per-plot params is broken lin_sc=function(x, all_lineages = F, ...){ lf_var = get(paste0(x,"_lin_lf")) wf_var = get(paste0(x,"_lin_wf")) cowplot::plot_grid(lin_count_bp_diversity(wf_var, all_lineages, ...), lin_count_bp(lf_var, all_lineages, ...)) } options(shiny.port = 8000) options(shiny.host = '0.0.0.0') # This means "listen to all addresses on all interfaces" options(shiny.launch.browser = FALSE) options(width=120) options(DT.options = list(scrollX = TRUE)) ################ STATIC GLOBALS ONLY ############## # never quite sure where "outdir" gets set :-| # using dataframes instead of lists lets us avoid use of map() plot_functions_df=data.frame( tab_name=c( "LogoP SNP", "Lineage Sample Count", "Site SNP count", "Stability SNP by site", "DM OM Plots", "Correlation", "Lineage Distribution", "Consurf", "LogoP OR", "LogoP ED" ), plot_function=c( "LogoPlotSnps", "lin_sc", "site_snp_count_bp", "bp_stability_hmap", "lf_bp2", "my_corr_pairs", "lineage_distP", "wideP_consurf3", "LogoPlotCustomH", "LogoPlotMSA" ), plot_df=c( "mutable_df3" , "lin_lf", "mutable_df3", "merged_df3" , "lf_duet" , "corr_df_m3_f", "merged_df2", "merged_df3", "merged_df2", "unified_msa" ) ) stability_boxes_df=data.frame( outcome_colname=c("duet_outcome", "foldx_outcome", "deepddg_outcome", "ddg_dynamut2_outcome", "mcsm_na_outcome", "mcsm_ppi2_outcome", "snap2_outcome", "consurf_outcome", "avg_stability_outcome"), stability_type=c( "DUET", "FoldX", "DeepDDG", "Dynamut2", "mCSM-NA", "mCSM-ppi2", "SNAP2", "Consurf", "Average" ), stability_colname=c( "duet_scaled", "foldx_scaled", "deepddg_scaled", "ddg_dynamut2_scaled", "mcsm_na_scaled", "mcsm_ppi2_scaled", "snap2_scaled", "consurf_scaled", "avg_stability_scaled" ) ) table_columns = c( "position", "mutationinformation", "sensitivity", "ligand_distance", "avg_lig_affinity", "avg_lig_affinity_outcome", "avg_stability", "avg_stability_outcome", "or_mychisq", "maf", "snap2_outcome", "consurf_outcome", "provean_outcome", "rsa", "kd_values" , "rd_values" ) logoPlotSchemes <- list("chemistry" , "taylor" , "hydrophobicity" , "clustalx") dm_om_methods = c("DUET ΔΔG" , "Consurf" , "Deepddg ΔΔG" , "Dynamut2 ΔΔG" , "FoldX ΔΔG" , "Ligand affinity (log fold change)" , "mCSM-NA affinity ΔΔG" , "SNAP2") dm_om_map = hash(c( "DUET ΔΔG" , "Consurf" , "Deepddg ΔΔG" , "Dynamut2 ΔΔG" , "FoldX ΔΔG" , "Ligand affinity (log fold change)" , "mCSM-NA affinity ΔΔG" , "SNAP2" ), c( "lf_duet" ,"lf_consurf" ,"lf_deepddg" ,"lf_dynamut2" ,"lf_foldx" ,"lf_mcsm_lig" ,"lf_mcsm_na" ,"lf_snap2" ) ) #### target_map: handy gene/drug mapping hash #### target_map = hash( c( "alr", "gid", "embb", "pnca", "rpob", "katg"), c( "cycloserine", "streptomycin", "ethambutol", "pyrazinamide", "rifampicin", "isoniazid") ) # load E V E R Y T H I N G lapply(c( "alr", "embb", "gid", "katg", "pnca", "rpob" ),function(x){ invisible(load_target_globals(x)) invisible(load_msa_global(x)) # turn off to speed up start time at the expense of "LogoP ED" } ) consurf_palette1 = c("0" = "yellow2" , "1" = "cyan1" , "2" = "steelblue2" , "3" = "cadetblue2" , "4" = "paleturquoise2" , "5" = "thistle3" , "6" = "thistle2" , "7" = "plum2" , "8" = "maroon" , "9" = "violetred2") consurf_palette2 = c("0" = "yellow2" , "1" = "forestgreen" , "2" = "seagreen3" , "3" = "palegreen1" , "4" = "darkseagreen2" , "5" = "thistle3" , "6" = "lightpink1" , "7" = "orchid3" , "8" = "orchid4" , "9" = "darkorchid4") # decreasing levels mess legend # consurf_colours_LEVEL = c( # "0" = rgb(1.00,1.00,0.59) # , "9" = rgb(0.63,0.16,0.37) # , "8" = rgb(0.94,0.49,0.67) # , "7" = rgb(0.98,0.78,0.86) # , "6" = rgb(0.98,0.92,0.96) # , "5" = rgb(1.00,1.00,1.00) # , "4" = rgb(0.84,0.94,0.94) # , "3" = rgb(0.65,0.86,0.90) # , "2" = rgb(0.29,0.69,0.75) # , "1" = rgb(0.04,0.49,0.51) # ) consurf_colours = c( "0" = rgb(1.00,1.00,0.59) , "1" = rgb(0.04,0.49,0.51) , "2" = rgb(0.29,0.69,0.75) , "3" = rgb(0.65,0.86,0.90) , "4" = rgb(0.84,0.94,0.94) , "5" = rgb(1.00,1.00,1.00) , "6" = rgb(0.98,0.92,0.96) , "7" = rgb(0.98,0.78,0.86) , "8" = rgb(0.94,0.49,0.67) , "9" = rgb(0.63,0.16,0.37) )