function(input, output, session) { #output$LogoPlotSnps = renderPlot(LogoPlotSnps(mutable_df3)) output$lin_sc = renderPlot( lin_sc( input$switch_target, all_lineages = input$all_lineages, my_xats = 12, # x axis text size my_yats = 12, # y axis text size my_xals = 12, # x axis label size my_yals = 12, # y axis label size my_lls = 12, # legend label size d_lab_size = 4 ) ) #### lineage_distP #### output$lineage_distP = renderPlot( lineage_distP( get(paste0(input$switch_target, '_merged_df2')), all_lineages = input$all_lineages, x_lab = "Average Stability", x_axis = "avg_stability_scaled", fill_categ_cols = c("red", "blue") ) ) #### observeEvent() Fun(tm) #### observeEvent( { input$clear_ngl input$force }, { NGLVieweR_proxy("structure") %>% removeSelection("Pos") }) # Button to test adding a position observeEvent(input$test_ngl, { NGLVieweR_proxy("structure") %>% addSelection('ball+stick' , param = list( name = "Pos" , sele = "35" , color = "green") ) }) observeEvent( { input$force input$switch_target input$snp_ligand_dist input$snp_nca_dist input$snp_interface_dist },{ merged_df3 = cbind(get(paste0(input$switch_target, '_merged_df3'))) position_max=max(merged_df3[['position']]) position_min=min(merged_df3[['position']]) min_ligand_distance=min(merged_df3$ligand_distance) max_ligand_distance=max(merged_df3$ligand_distance) # FIXME: these are IMPORTANT # # add "pos_count" position count column # merged_df3=merged_df3 %>% dplyr::add_count(position) # merged_df3$pos_count=merged_df3$n # merged_df3$n=NULL # mutable_df3 = cbind(merged_df3) #### site_snp_count_bp #### #mutable_df3[(mutable_df3$position>=plot_min & mutable_df3$position <=plot_max),] # ligand_distance # interface_dist # nca_distance # change to: multiple plots, all use site_snp_count_bp # 4 x plots side by side, one normal (no dist. filter), 2/3 filtered by distance columns above # use "subtitle text" from pos_count_bp_i.R # different data ranges required for SNP distances snp_ligand_dist_df3 = merged_df3[merged_df3[['ligand_distance']]% dplyr::add_count(position) # merged_df3$pos_count=merged_df3$n # merged_df3$n=NULL # mutable_df3 = cbind(merged_df3) # # # re-sort the dataframe according to position count sorted_df = cbind(merged_df3) sorted_df = sorted_df %>% arrange(pos_count) # outdir = paste0(load_dir, "Data/", drug, '/output/') indir = paste0(load_dir, "Data/", drug , "/input/") #### nasty special-purpose merged_df3 variants #### # FIXME: SLOW # corr_plotdf = corr_data_extract( # merged_df3 # , gene = gene # , drug = drug # , extract_scaled_cols = F # ) #input$stability_snp_param # updateCheckboxGroupInput( # session, # "corr_selected", # choiceNames = colnames(get(paste0(input$switch_target,"_corr_df_m3_f"))), # choiceValues = colnames(get(paste0(input$switch_target,"_corr_df_m3_f"))), # selected = c("FoldX", "DeepDDG", "mCSM.DUET") # ) # # updateSliderInput( # session, # "display_position_range", # min = position_min, # max = position_max # #, value = c(position_min, position_min+150) # ) # # updateNumericInput(session, "selected_logop_snp_position", min = position_min, max = position_max, value = position_min) # updateNumericInput(session, "selected_logop_ed_position", min = position_min, max = position_max, value = position_min) # updateNumericInput(session, "corr_lig_dist", min = min_ligand_distance, max = max_ligand_distance, value = min_ligand_distance) # # updateNumericInput(session, "snp_ligand_dist", min = min(merged_df3$ligand_distance), max = max(merged_df3$ligand_distance)) # updateNumericInput(session, "snp_interface_dist", min = min(merged_df3$interface_dist), max = max(merged_df3$interface_dist)) # updateNumericInput(session, "snp_nca_dist", min = min(merged_df3$nca_distance), max = max(merged_df3$nca_distance)) stability_colname = stability_boxes_df[stability_boxes_df$stability_type==input$stability_snp_param,"stability_colname"] outcome_colname = stability_boxes_df[stability_boxes_df$stability_type==input$stability_snp_param,"outcome_colname"] display_position_range = input$display_position_range plot_min=display_position_range[1] plot_max=display_position_range[2] logoplot_colour_scheme = input$logoplot_colour_scheme omit_snp_count = input$omit_snp_count #print(paste0('Plotting positions between: ', plot_min, ' and ', plot_max)) subset_mutable_df3=mutable_df3[(mutable_df3$position>=plot_min & mutable_df3$position <=plot_max),] subset_mutable_df3=mutable_df3[(mutable_df3$position>=plot_min & mutable_df3$position <=plot_max),] subset_sorted_df=sorted_df[(sorted_df$position>=plot_min & sorted_df$position <=plot_max),] #### LogoPlotSnps #### output$LogoPlotSnps = renderPlot( LogoPlotSnps(subset_mutable_df3, aa_pos_drug = get(paste0(target_gene,"_aa_pos_drug")), active_aa_pos = get(paste0(target_gene,"_active_aa_pos")), aa_pos_lig1 = get(paste0(target_gene,"_aa_pos_lig1")), aa_pos_lig2 = get(paste0(target_gene,"_aa_pos_lig2")), aa_pos_lig3 = get(paste0(target_gene,"_aa_pos_lig3")), my_logo_col = logoplot_colour_scheme, omit_snp_count = omit_snp_count ) ) ### NGLViewer #### # Structure Viewer WebGL/NGLViewR window output$structure <- renderNGLVieweR({ #ngl_gene=isolate(input$switch_target) ngl_gene=input$switch_target ngl_drug=target_map[[ngl_gene]] ngl_pdb_file=paste0(load_dir, "Data/", ngl_drug, '/output/depth/', ngl_gene, '_complex.pdb') print(ngl_pdb_file) NGLVieweR(ngl_pdb_file) %>% addRepresentation("cartoon", param = list(name = "cartoon", color="tan" #, colorScheme = "chainid" ) ) %>% stageParameters(backgroundColor = "lightgrey") %>% setQuality("high") %>% setFocus(0) %>% setSpin(FALSE) }) #### Shared dataTable() #### output$table = DT::renderDataTable( datatable(subset_sorted_df[,table_columns], filter="top", selection = "single" ) ) } ) observeEvent( { input$force input$switch_target }, { target_gene = input$switch_target #### DM OM Plots #### #dm_om_param # order needs to be: # embb_lf_duet, embb_lf_foldx, embb_lf_deepddg, embb_lf_dynamut2, embb_lf_dist_gen, # embb_lf_consurf, embb_lf_provean, embb_lf_snap2, embb_lf_mcsm_lig, embb_lf_mmcsm_lig, # embb_lf_mcsm_ppi2, SOMETHING NA # embb_lf_mmcsm_lig SOMETHING NA, #dm_om_selection=input$dm_om_param #dm_om_df = dm_om_map[[dm_om_selection]] #output$lf_bp2 = renderPlot(lf_bp2(get(paste0(input$switch_target, '_', dm_om_df)))) output$lf_bp2 = renderPlot( cowplot::plot_grid( plotlist = lapply( ls(name=.GlobalEnv, pattern=paste0( target_gene, '_lf_' ) ), function(x){ lf_bp2(get(x)) } )#, nrow=3 ), height=800 ) } ) # FIXME: Doesn't add selected table rows correctly observeEvent( { input$table_rows_selected }, { # having to duplicate this is a bit annoying :-( ngl_merged_df3=cbind(get(paste0(input$switch_target, '_merged_df3'))) ngl_sorted_df = cbind(ngl_merged_df3) ngl_sorted_df = ngl_sorted_df %>% arrange(pos_count) position_max=max(ngl_merged_df3[['position']]) position_min=min(ngl_merged_df3[['position']]) display_position_range = input$display_position_range plot_min=display_position_range[1] plot_max=display_position_range[2] #ngl_subset_df=ngl_merged_df3[(ngl_merged_df3$position>=plot_min & ngl_merged_df3$position <=plot_max),] ngl_subset_df=ngl_sorted_df[(ngl_sorted_df$position>=plot_min & ngl_sorted_df$position <=plot_max),] #table_rows_selected = isolate(input$table_rows_selected) table_rows_selected = input$table_rows_selected class(table_rows_selected) #cat(paste0("Target: ", as.character(input$switch_target), "\nTable Rows for NGLViewR: ", as.character(table_rows_selected))) struct_pos=(as.character(ngl_subset_df[table_rows_selected,"position"])) cat(paste0('Table Index: ', table_rows_selected, "position: ", struct_pos)) NGLVieweR_proxy("structure") %>% #addSelection('ball+stick' addSelection('hyperball' , param = list( name = "Pos" , sele = struct_pos #, color = "#00ff00" , colorValue="00ff00" , colorScheme="element" ) ) #cat(paste0('Done NGLViewR addSelection for: ', positions_to_add)) } ) #### Correlation observeEvent #### # Yet another special-case observeEvent to handle the correlation pair plot observeEvent( { input$corr_selected input$corr_method input$corr_lig_dist }, { dist_cutoff_user = input$corr_lig_dist target_gene=input$switch_target plot_title=paste0(target_map[[target_gene]],"/",target_gene) corr_plot_df = get( paste0( input$switch_target,"_corr_df_m3_f" ) )[,c(input$corr_selected, "dst_mode")] #if ( dist_cutoff_user >= 2) { #corr_plotdf_subset = corr_plot_df[corr_plot_df[['Lig.Dist']] < dist_cutoff_user,] #} # else { # corr_plotdf_subset = corr_plot_df # } #### Correlation using ggpairs() #### output$my_corr_pairs = renderPlot( dashboard_ggpairs( corr_plot_df, plot_title = plot_title, method = input$corr_method, tt_args_size = 7, gp_args_size = 7 ), height = 900 ) } ) }