main dashboard

This commit is contained in:
Tanushree Tunstall 2022-09-07 19:22:50 +01:00
parent 877e128ee1
commit b1c65863c6
3 changed files with 1471 additions and 677 deletions

File diff suppressed because it is too large Load diff

View file

@ -4,78 +4,395 @@ library(DT)
library(NGLVieweR) library(NGLVieweR)
library(hash) library(hash)
server <- function(input, output) { function(input, output, session) {
observeEvent({
input$combined_model #output$LogoPlotSnps = renderPlot(LogoPlotSnps(mutable_df3))
input$combined_data output$lin_sc = renderPlot(
input$combined_training_genes lin_sc(
input$score_dropdown input$switch_target,
input$resample_dropdown all_lineages = input$all_lineages,
input$drug_dropdown my_xats = 12, # x axis text size
input$split_dropdown my_yats = 12, # y axis text size
my_xals = 12, # x axis label size
},{ my_yals = 12, # y axis label size
combined_model = input$combined_model my_lls = 12, # legend label size
selection = input$score_dropdown d_lab_size = 4
resampler = input$resample_dropdown )
selected_drug = input$drug_dropdown )
selected_split = input$split_dropdown #### lineage_distP ####
combined_data = input$combined_data output$lineage_distP = renderPlot(
combined_training_genes = input$combined_training_genes lineage_distP(
get(paste0(input$switch_target, '_merged_df2')),
selected_gene = combo[combo$drug == selected_drug,'gene'] all_lineages = input$all_lineages,
x_lab = "Average Stability",
# hide stuff if selected x_axis = "avg_stability_scaled",
if(combined_model == "combined") { fill_categ_cols = c("red", "blue")
#if(combined_model == TRUE) { )
)
hide("split_dropdown")
hide("resample_dropdown")
show("combined_data") #### observeEvent() Fun(tm) ####
show("combined_training_genes") observeEvent(input$clear_ngl, {
filedata = paste0(combined_training_genes, NGLVieweR_proxy("structure") %>%
'genes_logo_skf_BT_', removeSelection("Pos")
selected_gene,
'_',
combined_data
)
print(filedata)
print('doing COMBINED plot')
output$plot <- renderPlot(makeplot(loaded_files[[filedata]],
selection,
"none", # always 'none' for combined plot
gene = combo[drug==selected_drug,"gene"],
combined_training_genes = combined_training_genes,
display_combined = TRUE,
)
)
# e.g.
# makeplot(loaded_files$`5genes_logo_skf_BT_pnca_actual`, "MCC", "none" , gene = 'foo', combined_training_genes = '1234', display_combined = TRUE)
} else {
show("split_dropdown")
show("resample_dropdown")
hide("combined_data")
hide("combined_training_genes")
filedata = paste0(combo[drug==selected_drug,"gene"],
'_baselineC_',
selected_split
)
print(filedata)
print("doing GENE plot")
output$plot <- renderPlot(makeplot(loaded_files[[filedata]],
selection,
resampler,
gene = combo[drug==selected_drug,"gene"],
display_combined = FALSE,
)
)
}
# 6genes_logo_skf_BT_gid_complete
# filedata example for combined: 6genes_logo_skf_BT_embb_actual
# 6genes_logo_skf_BT_embb_combined
}) })
} # Button to test adding a position
observeEvent(input$test_ngl, {
NGLVieweR_proxy("structure") %>%
addSelection('ball+stick'
, param = list(
name = "Pos"
, sele = "35"
, color = "green")
)
})
observeEvent(
{
input$display_position_range
input$stability_snp_param
input$logoplot_colour_scheme
input$omit_snp_count
input$switch_target
input$snp_ligand_dist
input$snp_nca_dist
input$snp_interface_dist
},
{
print("entering main observeEvent()")
# C O M P A T I B I L I T Y
#gene=input$switch_target
#drug=target_map[[gene]]
target_gene = input$switch_target
merged_df3 = cbind(get(paste0(input$switch_target, '_merged_df3')))
position_max=max(merged_df3[['position']])
position_min=min(merged_df3[['position']])
min_ligand_distance=min(merged_df3$ligand_distance)
max_ligand_distance=max(merged_df3$ligand_distance)
# FIXME: these are IMPORTANT
# # add "pos_count" position count column
# merged_df3=merged_df3 %>% dplyr::add_count(position)
# merged_df3$pos_count=merged_df3$n
# merged_df3$n=NULL
#
mutable_df3 = cbind(merged_df3)
#
# # re-sort the dataframe according to position count
sorted_df = cbind(merged_df3)
sorted_df = sorted_df %>% arrange(pos_count)
#
outdir = paste0(load_dir, "Data/", drug, '/output/')
indir = paste0(load_dir, "Data/", drug , "/input/")
#### nasty special-purpose merged_df3 variants ####
# FIXME: SLOW
# corr_plotdf = corr_data_extract(
# merged_df3
# , gene = gene
# , drug = drug
# , extract_scaled_cols = F
# )
#input$stability_snp_param
updateCheckboxGroupInput(
session,
"corr_selected",
choiceNames = colnames(get(paste0(input$switch_target,"_corr_df_m3_f"))),
choiceValues = colnames(get(paste0(input$switch_target,"_corr_df_m3_f"))),
selected = c("FoldX", "DeepDDG", "mCSM.DUET")
)
updateSliderInput(
session,
"display_position_range",
min = position_min,
max = position_max
#, value = c(position_min, position_min+150)
)
updateNumericInput(session, "selected_logop_snp_position", min = position_min, max = position_max, value = position_min)
updateNumericInput(session, "selected_logop_ed_position", min = position_min, max = position_max, value = position_min)
updateNumericInput(session, "corr_lig_dist", min = min_ligand_distance, max = max_ligand_distance, value = min_ligand_distance)
updateNumericInput(session, "snp_ligand_dist", min = min(merged_df3$ligand_distance), max = max(merged_df3$ligand_distance))
updateNumericInput(session, "snp_interface_dist", min = min(merged_df3$interface_dist), max = max(merged_df3$interface_dist))
updateNumericInput(session, "snp_nca_dist", min = min(merged_df3$nca_distance), max = max(merged_df3$nca_distance))
# different data ranges required for SNP distances
snp_ligand_dist_df3 = merged_df3[merged_df3$ligand_distance<input$snp_ligand_dist,]
snp_interface_dist_df3 = merged_df3[merged_df3$interface_dist<input$snp_interface_dist,]
snp_nca_dist_df3 = merged_df3[merged_df3$nca_distance<input$snp_nca_dist,]
stability_colname = stability_boxes_df[stability_boxes_df$stability_type==input$stability_snp_param,"stability_colname"]
outcome_colname = stability_boxes_df[stability_boxes_df$stability_type==input$stability_snp_param,"outcome_colname"]
display_position_range = input$display_position_range
plot_min=display_position_range[1]
plot_max=display_position_range[2]
logoplot_colour_scheme = input$logoplot_colour_scheme
omit_snp_count = input$omit_snp_count
print(paste0('Plotting positions between: ', plot_min, ' and ', plot_max))
subset_mutable_df3=mutable_df3[(mutable_df3$position>=plot_min & mutable_df3$position <=plot_max),]
subset_mutable_df3=mutable_df3[(mutable_df3$position>=plot_min & mutable_df3$position <=plot_max),]
subset_sorted_df=sorted_df[(sorted_df$position>=plot_min & sorted_df$position <=plot_max),]
#### LogoPlotSnps ####
output$LogoPlotSnps = renderPlot(
LogoPlotSnps(subset_mutable_df3,
aa_pos_drug = get(paste0(target_gene,"_aa_pos_drug")),
active_aa_pos = get(paste0(target_gene,"_active_aa_pos")),
aa_pos_lig1 = get(paste0(target_gene,"_aa_pos_lig1")),
aa_pos_lig2 = get(paste0(target_gene,"_aa_pos_lig2")),
aa_pos_lig3 = get(paste0(target_gene,"_aa_pos_lig3")),
my_logo_col = logoplot_colour_scheme,
omit_snp_count = omit_snp_count
)
)
### NGLViewer ####
# Structure Viewer WebGL/NGLViewR window
output$structure <- renderNGLVieweR({
ngl_gene=isolate(input$switch_target)
ngl_drug=target_map[[ngl_gene]]
ngl_pdb_file=paste0(load_dir, "Data/", ngl_drug, '/output/depth/', ngl_gene, '_complex.pdb')
print(ngl_pdb_file)
NGLVieweR(ngl_pdb_file) %>%
addRepresentation("cartoon",
param = list(name = "cartoon",
color="tan"
#, colorScheme = "chainid"
)
) %>%
stageParameters(backgroundColor = "lightgrey") %>%
setQuality("high") %>%
setFocus(0) %>%
setSpin(FALSE)
})
#### Shared dataTable() ####
output$table = DT::renderDataTable(
datatable(subset_sorted_df[,table_columns],
filter="top",
selection = "single"
)
)
#### bp_stability_hmap ####
# red/blue tiles wala "Stability SNP by Site"
output$bp_stability_hmap = renderPlot(
bp_stability_hmap(
subset_sorted_df,
reorder_position = input$reorder_custom_h,
p_title = NULL,
yvar_colname = stability_colname,
stability_colname = stability_colname,
stability_outcome_colname = outcome_colname,
my_ylab = NULL,
y_max_override = max(sorted_df$pos_count),
aa_pos_drug = get(paste0("embb","_aa_pos_drug")),
active_aa_pos = get(paste0("embb","_active_aa_pos")),
aa_pos_lig1 = get(paste0("embb","_aa_pos_lig1")),
aa_pos_lig2 = get(paste0("embb","_aa_pos_lig2")),
aa_pos_lig3 = get(paste0("embb","_aa_pos_lig3"))
)
)
#### LogoPlotCustomH ####
output$LogoPlotCustomH = renderPlot(
LogoPlotCustomH(
subset_sorted_df,
my_logo_col = logoplot_colour_scheme,
aa_pos_drug = get(paste0(target_gene,"_aa_pos_drug")),
active_aa_pos = get(paste0(target_gene,"_active_aa_pos")),
aa_pos_lig1 = get(paste0(target_gene,"_aa_pos_lig1")),
aa_pos_lig2 = get(paste0(target_gene,"_aa_pos_lig2")),
aa_pos_lig3 = get(paste0(target_gene,"_aa_pos_lig3"))
)
)
#### wideP_consurf3 ####
output$wideP_consurf3 = renderPlot(
wideP_consurf3(
subset_sorted_df,
point_colours = consurf_colours,
aa_pos_drug = get(paste0(target_gene,"_aa_pos_drug")),
active_aa_pos = get(paste0(target_gene,"_active_aa_pos")),
aa_pos_lig1 = get(paste0(target_gene,"_aa_pos_lig1")),
aa_pos_lig2 = get(paste0(target_gene,"_aa_pos_lig2")),
aa_pos_lig3 = get(paste0(target_gene,"_aa_pos_lig3"))
)
)
#### site_snp_count_bp ####
#mutable_df3[(mutable_df3$position>=plot_min & mutable_df3$position <=plot_max),]
# ligand_distance
# interface_dist
# nca_distance
# change to: multiple plots, all use site_snp_count_bp
# 4 x plots side by side, one normal (no dist. filter), 2/3 filtered by distance columns above
# use "subtitle text" from pos_count_bp_i.R
output$site_snp_count_bp = renderPlot(
site_snp_count_bp(
mutable_df3,
title_colour = 'black',
subtitle_colour = "black",
leg_text_size = 12,
axis_label_size = 12,
geom_ls = 4
)
)
output$site_snp_count_bp_ligand = renderPlot(
site_snp_count_bp(
snp_ligand_dist_df3,
title_colour = 'black',
subtitle_colour = "black",
leg_text_size = 12,
axis_label_size = 12,
geom_ls = 4
)
)
output$site_snp_count_interface = renderPlot(
site_snp_count_bp(
snp_interface_dist_df3,
title_colour = 'black',
subtitle_colour = "black",
leg_text_size = 12,
axis_label_size = 12,
geom_ls = 4
)
)
output$site_snp_count_nca = renderPlot(
site_snp_count_bp(
snp_nca_dist_df3,
title_colour = 'black',
subtitle_colour = "black",
leg_text_size = 12,
axis_label_size = 12,
geom_ls = 4
)
)
#### DM OM Plots ####
#dm_om_param
# order needs to be:
# embb_lf_duet, embb_lf_foldx, embb_lf_deepddg, embb_lf_dynamut2, embb_lf_dist_gen,
# embb_lf_consurf, embb_lf_provean, embb_lf_snap2, embb_lf_mcsm_lig, embb_lf_mmcsm_lig,
# embb_lf_mcsm_ppi2, SOMETHING NA
# embb_lf_mmcsm_lig SOMETHING NA,
#dm_om_selection=input$dm_om_param
#dm_om_df = dm_om_map[[dm_om_selection]]
#output$lf_bp2 = renderPlot(lf_bp2(get(paste0(input$switch_target, '_', dm_om_df))))
output$lf_bp2 = renderPlot(
cowplot::plot_grid(
plotlist = lapply(
ls(name=.GlobalEnv,
pattern=paste0(
target_gene,
'_lf_'
)
),
function(x){
lf_bp2(get(x))
}
)#, nrow=3
), height=800
)
}
)
# FIXME: Doesn't add selected table rows correctly
observeEvent(
{
input$table_rows_selected
},
{
# having to duplicate this is a bit annoying :-(
ngl_merged_df3=cbind(get(paste0(input$switch_target, '_merged_df3')))
ngl_sorted_df = cbind(ngl_merged_df3)
ngl_sorted_df = ngl_sorted_df %>% arrange(pos_count)
position_max=max(ngl_merged_df3[['position']])
position_min=min(ngl_merged_df3[['position']])
display_position_range = input$display_position_range
plot_min=display_position_range[1]
plot_max=display_position_range[2]
#ngl_subset_df=ngl_merged_df3[(ngl_merged_df3$position>=plot_min & ngl_merged_df3$position <=plot_max),]
ngl_subset_df=ngl_sorted_df[(ngl_sorted_df$position>=plot_min & ngl_sorted_df$position <=plot_max),]
#table_rows_selected = isolate(input$table_rows_selected)
table_rows_selected = input$table_rows_selected
class(table_rows_selected)
#cat(paste0("Target: ", as.character(input$switch_target), "\nTable Rows for NGLViewR: ", as.character(table_rows_selected)))
struct_pos=(as.character(ngl_subset_df[table_rows_selected,"position"]))
cat(paste0('Table Index: ', table_rows_selected, "position: ", struct_pos))
NGLVieweR_proxy("structure") %>%
#addSelection('ball+stick'
addSelection('hyperball'
, param = list(
name = "Pos"
, sele = struct_pos
#, color = "#00ff00"
, colorValue="00ff00"
, colorScheme="element"
)
)
#cat(paste0('Done NGLViewR addSelection for: ', positions_to_add))
}
)
#### Correlation observeEvent ####
# Yet another special-case observeEvent to handle the correlation pair plot
observeEvent(
{
input$corr_selected
input$corr_method
input$corr_lig_dist
},
{
dist_cutoff_user = input$corr_lig_dist
target_gene=input$switch_target
plot_title=paste0(target_map[[target_gene]],"/",target_gene)
corr_plot_df = get(
paste0(
input$switch_target,"_corr_df_m3_f"
)
)[,c(input$corr_selected, "dst_mode")]
#if ( dist_cutoff_user >= 2) {
#corr_plotdf_subset = corr_plot_df[corr_plot_df[['Lig.Dist']] < dist_cutoff_user,]
#}
# else {
# corr_plotdf_subset = corr_plot_df
# }
#### Correlation using ggpairs() ####
output$my_corr_pairs = renderPlot(
dashboard_ggpairs(
corr_plot_df,
plot_title = plot_title,
method = input$corr_method,
tt_args_size = 7,
gp_args_size = 7
), height = 900
)
}
)
}

View file

@ -7,259 +7,343 @@ library(hash)
#### Shiny UI ##### #### Shiny UI #####
#dashboardHeader(title = paste0(gene, "/", drug)),
dashboardPage(skin="purple", dashboardPage(skin="purple",
dashboardHeader(title = "Drug/Target Explorer"), dashboardHeader(title = "Drug/Target Explorer"),
dashboardSidebar( dashboardSidebar(
sidebarMenu( id = "sidebar", sidebarMenu( id = "sidebar",
selectInput( selectInput(
"switch_target", "switch_target",
label="Switch to New Target", label="Switch to New Target",
choices = c( choices = c(
"alr", "alr",
"embb", "embb",
"gid", "gid",
"katg", "katg",
"pnca", "pnca",
"rpob" "rpob"
), ),
selected="embb"), selected="embb"),
menuItem("LogoP SNP", tabName="LogoP SNP"), menuItem("LogoP SNP", tabName="LogoP SNP"),
menuItem("Lineage Sample Count", tabName="Lineage Sample Count"), #menuItem("Lineage Sample Count", tabName="Lineage Sample Count"),
menuItem("Site SNP count", tabName="Site SNP count"), menuItem("Site SNP count", tabName="Site SNP count"),
menuItem("Stability SNP by site", tabName="Stability SNP by site"), menuItem("Stability SNP by site", tabName="Stability SNP by site"),
menuItem("DM OM Plots", tabName="DM OM Plots"), menuItem("DM OM Plots", tabName="DM OM Plots"),
menuItem("Correlation", tabName="Correlation"), menuItem("Correlation", tabName="Correlation"),
menuItem("Lineage Distribution", tabName="Lineage Distribution"), #menuItem("Lineage Distribution", tabName="Lineage Distribution"),
menuItem("Consurf", tabName="Consurf"), menuItem("Consurf", tabName="Consurf"),
menuItem("LogoP OR", tabName="LogoP OR"), menuItem("LogoP OR", tabName="LogoP OR"),
menuItem("LogoP ED", tabName="LogoP ED"), menuItem("Lineage", tabName="Lineage"),
menuItem('Stability count', tabName='Stability count'), #menuItem('Stability count', tabName='Stability count'),
# These conditionalPanel()s make extra settings appear in the sidebar when needed # These conditionalPanel()s make extra settings appear in the sidebar when needed
conditionalPanel( conditionalPanel(
condition="input.sidebar == 'LogoP SNP'", condition="input.sidebar == 'LogoP SNP'",
textInput( textInput(
"omit_snp_count", "omit_snp_count",
"Omit SNPs", "Omit SNPs",
value = c(0), value = c(0),
placeholder = "1,3,6" placeholder = "1,3,6"
) )
), ),
# NOTE: # NOTE:
# I *think* we can cheat here slightly and use the min/max from # I *think* we can cheat here slightly and use the min/max from
# merged_df3[['position']] for everything because the various # merged_df3[['position']] for everything because the various
# dataframes for a given gene/drug combination have the # dataframes for a given gene/drug combination have the
# same range of positions. May need fixing, especially # same range of positions. May need fixing, especially
# if we get/shrink the imported data files to something # if we get/shrink the imported data files to something
# more reasonable. # more reasonable.
conditionalPanel( conditionalPanel(
condition=" condition="
input.sidebar == 'LogoP SNP'|| input.sidebar == 'LogoP SNP'||
input.sidebar == 'Stability SNP by site' || input.sidebar == 'Stability SNP by site' ||
input.sidebar == 'Consurf' || input.sidebar == 'Consurf' ||
input.sidebar == 'LogoP OR' || input.sidebar == 'LogoP OR'",
input.sidebar == 'Site SNP count'", sliderInput(
sliderInput( "display_position_range"
"display_position_range" , "Display Positions"
, "Display Positions" , min=1, max=150, value=c(1,150) # 150 is just a little less than the smallest pos_count
, min=1, max=150, value=c(1,150) # 150 is just a little less than the smallest pos_count )
) ),
),
conditionalPanel( conditionalPanel(
condition="input.sidebar == 'LogoP ED'", condition="
sliderInput(
"display_position_full_range"
, "Display Positions"
, min=1, max=150, value=c(1,150)
)
),
conditionalPanel(
condition="
input.sidebar == 'LogoP SNP' || input.sidebar == 'LogoP SNP' ||
input.sidebar == 'LogoP OR' || input.sidebar == 'LogoP OR' ||
input.sidebar == 'LogoP ED'", input.sidebar == 'LogoP ED'",
selectInput( selectInput(
"logoplot_colour_scheme", "logoplot_colour_scheme",
label="Logo Plot Colour Scheme", label="Logo Plot Colour Scheme",
choices = logoPlotSchemes, choices = logoPlotSchemes,
selected="chemistry" selected="chemistry"
) )
), ),
#conditionalPanel( conditionalPanel(
# condition="input.sidebar == 'LogoP SNP' || input.sidebar == 'LogoP ED'|| input.sidebar == 'Consurf'", condition="input.sidebar == 'Correlation'",
# numericInput( selectInput(
# "table_position" "corr_method",
# , "Table Position", value=1 label="Correlation Method",
# ) choices = list("spearman",
#), "pearson",
conditionalPanel( "kendall"),
condition="input.sidebar == 'Correlation'", selected="spearman"
selectInput( )
"corr_method", ),
label="Correlation Method", conditionalPanel(
choices = list("spearman", condition="input.sidebar == 'Correlation'",
"pearson", numericInput(
"kendall"), "corr_lig_dist"
selected="spearman" , "Ligand Distance Cutoff (Å)", value=1
) )
), ),
conditionalPanel( conditionalPanel(
condition="input.sidebar == 'Correlation'", condition="input.sidebar == 'Site SNP count'",
numericInput( numericInput(
"corr_lig_dist" "snp_ligand_dist"
, "Ligand Distance Cutoff (Å)", value=1 , "Ligand Distance Cutoff (Å)", value=10
) )
), ),
conditionalPanel(
conditionalPanel( condition="input.sidebar == 'Site SNP count'",
condition="input.sidebar == 'Correlation'", numericInput(
checkboxGroupInput( "snp_interface_dist"
"corr_selected", , "Interface Distance Cutoff (Å)", value=10
"Parameters", )
choiceNames = c( ),
"DeepDDG", conditionalPanel(
"Dynamut2", condition="input.sidebar == 'Site SNP count'",
"FoldX", numericInput(
"ConSurf"#, "snp_nca_dist"
#"dst_mode" , "NCA Distance Cutoff (Å)", value=10
), )
choiceValues = c( ),
"DeepDDG",
"Dynamut2", conditionalPanel(
"FoldX", condition="input.sidebar == 'Correlation'",
"ConSurf"#, checkboxGroupInput(
#"dst_mode" "corr_selected",
), "Parameters",
selected = c( choiceNames = c(
"DeepDDG", "DeepDDG",
"Dynamut2", "Dynamut2",
"FoldX", "FoldX",
"ConSurf"#, "ConSurf"#,
#"dst_mode" ),
) choiceValues = c(
) "DeepDDG",
), "Dynamut2",
"FoldX",
conditionalPanel( "ConSurf"#,
condition="input.sidebar == 'DM OM Plots'", ),
selectInput( selected = c(
"dm_om_param", "DeepDDG",
label="Stability Parameter", "Dynamut2",
choices = keys(dm_om_map), "FoldX",
selected="SNAP2") "ConSurf"#,
), )
# colour_categ )
conditionalPanel( ),
condition="input.sidebar == 'Stability SNP by site'",
selectInput( # conditionalPanel(
"stability_snp_param", # condition="input.sidebar == 'DM OM Plots'",
label="Stability Parameter", # selectInput(
choices = stability_boxes_df$stability_type, # "dm_om_param",
selected="Average") # label="Stability Parameter",
), # choices = keys(dm_om_map),
conditionalPanel( # selected="SNAP2")
condition="input.sidebar == 'Stability SNP by site'", # ),
checkboxInput("reorder_custom_h", # colour_categ
label="Reorder by SNP count", conditionalPanel(
FALSE) condition="input.sidebar == 'Stability SNP by site'",
), selectInput(
conditionalPanel( "stability_snp_param",
condition="input.sidebar.match(/^Lineage.*/)", label="Stability Parameter",
checkboxInput("all_lineages", choices = stability_boxes_df$stability_type,
label="All Lineages", selected="Average")
FALSE) ),
), conditionalPanel(
# an example of how you can match multiple things in frontend JS condition="input.sidebar == 'Stability SNP by site'",
conditionalPanel( checkboxInput("reorder_custom_h",
condition="input.sidebar == 'LogoP SNP' || label="Reorder by SNP count",
FALSE)
),
conditionalPanel(
condition="input.sidebar.match(/^Lineage.*/)",
checkboxInput("all_lineages",
label="All Lineages",
FALSE)
),
# an example of how you can match multiple things in frontend JS
conditionalPanel(
condition="input.sidebar == 'LogoP SNP' ||
input.sidebar =='Stability SNP by site' || input.sidebar =='Stability SNP by site' ||
input.sidebar =='Consurf' || input.sidebar =='Consurf' ||
input.sidebar =='LogoP OR' || input.sidebar =='LogoP OR'",
input.sidebar =='LogoP ED'", actionButton("clear_ngl",
actionButton("clear_ngl", "Clear Structure")
"Clear Structure") ),
), conditionalPanel(
conditionalPanel( condition="input.sidebar == 'LogoP SNP' ||
condition="input.sidebar == 'LogoP SNP' ||
input.sidebar =='Stability SNP by site' || input.sidebar =='Stability SNP by site' ||
input.sidebar =='Consurf' || input.sidebar =='Consurf' ||
input.sidebar =='LogoP OR' || input.sidebar =='LogoP OR'",
input.sidebar =='LogoP ED'", actionButton("test_ngl",
actionButton("test_ngl", "Test NGLViewR")
"Test NGLViewR") )#,
)#,
# downloadButton("save",
# downloadButton("save", # "Download Plot"
# "Download Plot" # )
# ) # actionButton(
# actionButton( # "reload_target",
# "reload_target", # label="Reload Target\nData (slow!)"
# label="Reload Target\nData (slow!)" # )
# )
)
) ),
), #### body ####
body <- dashboardBody( body <- dashboardBody(
tabItems( tabItems(
tabItem(tabName = "dashboard", tabItem(tabName = "dashboard",
h2("Dashboard tab content") h2("Dashboard tab content")
), ),
tabItem(tabName = "widgets", tabItem(tabName = "widgets",
h2("Widgets tab content") h2("Widgets tab content")
) )
), ),
# creates a 'Conditional Panel' containing a plot object from each of our # creates a 'Conditional Panel' containing a plot object from each of our
# ggplot plot functions (and its associated data frame) # ggplot plot functions (and its associated data frame)
fluidRow(column(width=12, fluidRow(column(width=12,
lapply(plot_functions_df$tab_name, lapply(plot_functions_df$tab_name,
function(x){ function(x){
plot_function=plot_functions_df[ plot_function=plot_functions_df[
plot_functions_df$tab_name==x, plot_functions_df$tab_name==x,
"plot_function"] "plot_function"]
plot_df=plot_functions_df[ plot_df=plot_functions_df[
plot_functions_df$tab_name==x, plot_functions_df$tab_name==x,
"plot_df"] "plot_df"]
cat(paste0('\nCreating output: ', x)) cat(paste0('\nCreating output: ', x))
generate_conditionalPanel(x, plot_function, plot_df) generate_conditionalPanel(x, plot_function, plot_df)
} }
) )
) )
), ),
#### fluidRow()s for "Stability Count" in the sidebar #### # Explicit fluidRow() for Lineage plots together
fluidRow( fluidRow(
conditionalPanel( column(conditionalPanel(
condition=" condition="input.sidebar.match(/^Lineage.*/)", box(
title="Lineage Distribution"
, status = "info"
, width=NULL
, plotOutput("lineage_distP", height="700px") %>% withSpinner(color="#0dc5c1"),
height=800
)
), width=6
),
column(conditionalPanel(
condition="input.sidebar.match(/^Lineage.*/)", box(
title="Lineage SNP Diversity"
, status = "info"
, width=NULL
, plotOutput("lin_sc", height="700px") %>% withSpinner(color="#0dc5c1"),
height=800
)
), width=6
)
),
# Explicit fluidRow() for Site SNP Count
fluidRow(
column(conditionalPanel(
condition="input.sidebar == 'Site SNP count'",
box(
title="Site SNP count"
, status = "info"
, width=NULL
, plotOutput("site_snp_count_bp") %>% withSpinner(color="#0dc5c1")
)
), width=6
),
column(conditionalPanel(
condition="input.sidebar == 'Site SNP count'",
box(
title="Ligand Distance"
, status = "info"
, width=NULL
, plotOutput("site_snp_count_bp_ligand") %>% withSpinner(color="#0dc5c1")
)
), width=6
),
column(conditionalPanel(
condition="input.sidebar == 'Site SNP count'",
box(
title="Interface Distance"
, status = "info"
, width=NULL
, plotOutput("site_snp_count_interface") %>% withSpinner(color="#0dc5c1")
)
), width=6
),
column(conditionalPanel(
condition="input.sidebar == 'Site SNP count'",
box(
title="NCA Distance"
, status = "info"
, width=NULL
, plotOutput("site_snp_count_nca") %>% withSpinner(color="#0dc5c1")
)
), width=6
)
),
# # Explicit fluidRow() for Stability Count
# fluidRow(
# column(
# conditionalPanel(
# condition="input.sidebar.match(/^Lineage.*/)",
# lapply(
# # FIXME: using a hardcoded target DF for this IS WRONG AND WILL BREAK
# stability_boxes_df[stability_boxes_df$outcome_colname %in% colnames(embb_merged_df3),"outcome_colname"],
# function(x){
# print(paste0("outcome_colname: ",x))
# box(plotOutput(x), width=4)
# }
# ),
# width=12
# )
# )
# ),
#### fluidRow()s for "Stability Count" in the sidebar ####
fluidRow(
conditionalPanel(
condition="
input.sidebar == 'LogoP SNP' || input.sidebar == 'LogoP SNP' ||
input.sidebar =='Stability SNP by site' || input.sidebar =='Stability SNP by site' ||
input.sidebar =='Consurf' || input.sidebar =='Consurf' ||
input.sidebar =='LogoP OR' || input.sidebar =='LogoP OR'",
input.sidebar =='LogoP ED'", column(NGLVieweROutput("structure"),
column(NGLVieweROutput("structure"), width=3
width=3 )
) ),
), conditionalPanel(
conditionalPanel( condition="
condition="
input.sidebar == 'LogoP SNP' || input.sidebar == 'LogoP SNP' ||
input.sidebar == 'Stability SNP by site' || input.sidebar == 'Stability SNP by site' ||
input.sidebar == 'Site SNP count' || input.sidebar == 'Site SNP count' ||
input.sidebar == 'Consurf' || input.sidebar == 'Consurf' ||
input.sidebar == 'LogoP OR' || input.sidebar == 'LogoP OR'",
input.sidebar == 'LogoP ED'", column(
column( DT::dataTableOutput('table'),
DT::dataTableOutput('table'), width=9
width=9 )
) )
) ),
) )
)
) )