msa dashboard
This commit is contained in:
parent
88aaf56729
commit
3037d6e3ef
6 changed files with 643 additions and 0 deletions
|
@ -316,3 +316,344 @@ consurf_colours = c(
|
|||
, "9" = rgb(0.63,0.16,0.37)
|
||||
)
|
||||
|
||||
if (interactive()){
|
||||
options(shiny.launch.browser = FALSE) # i am a big girl and can tie my own laces
|
||||
options(shiny.port = 8000) # don't change the port every time
|
||||
options(shiny.host = '0.0.0.0') # This means "listen to all addresses on all interfaces"
|
||||
options(width=120)
|
||||
options(DT.options = list(scrollX = TRUE))
|
||||
|
||||
ui=dashboardPage(skin="purple",
|
||||
dashboardHeader(title = "Drug/Target Explorer"),
|
||||
|
||||
dashboardSidebar(
|
||||
sidebarMenu( id = "sidebar",
|
||||
selectInput(
|
||||
"switch_target",
|
||||
label="Switch to New Target",
|
||||
choices = c(
|
||||
"alr",
|
||||
"embb",
|
||||
"gid",
|
||||
"katg",
|
||||
"pnca",
|
||||
"rpob"
|
||||
),
|
||||
selected="embb"),
|
||||
menuItem("LogoP SNP", tabName="LogoP SNP"),
|
||||
menuItem("Lineage Sample Count", tabName="Lineage Sample Count"),
|
||||
menuItem("Site SNP count", tabName="Site SNP count"),
|
||||
menuItem("Stability SNP by site", tabName="Stability SNP by site"),
|
||||
menuItem("DM OM Plots", tabName="DM OM Plots"),
|
||||
menuItem("Correlation", tabName="Correlation"),
|
||||
menuItem("Lineage Distribution", tabName="Lineage Distribution"),
|
||||
menuItem("Consurf", tabName="Consurf"),
|
||||
menuItem("LogoP OR", tabName="LogoP OR"),
|
||||
menuItem("LogoP ED", tabName="LogoP ED"),
|
||||
menuItem('Stability count', tabName='Stability count'),
|
||||
|
||||
# These conditionalPanel()s make extra settings appear in the sidebar when needed
|
||||
conditionalPanel(
|
||||
condition="input.sidebar == 'LogoP SNP'",
|
||||
textInput(
|
||||
"omit_snp_count",
|
||||
"Omit SNPs",
|
||||
value = c(0),
|
||||
placeholder = "1,3,6"
|
||||
)
|
||||
),
|
||||
# NOTE:
|
||||
# I *think* we can cheat here slightly and use the min/max from
|
||||
# merged_df3[['position']] for everything because the various
|
||||
# dataframes for a given gene/drug combination have the
|
||||
# same range of positions. May need fixing, especially
|
||||
# if we get/shrink the imported data files to something
|
||||
# more reasonable.
|
||||
conditionalPanel(
|
||||
condition="
|
||||
input.sidebar == 'LogoP SNP'||
|
||||
input.sidebar == 'Stability SNP by site' ||
|
||||
input.sidebar == 'Consurf' ||
|
||||
input.sidebar == 'LogoP OR' ||
|
||||
input.sidebar == 'Site SNP count'",
|
||||
sliderInput(
|
||||
"display_position_range"
|
||||
, "Display Positions"
|
||||
, min=1, max=150, value=c(1,150) # 150 is just a little less than the smallest pos_count
|
||||
)
|
||||
),
|
||||
conditionalPanel(
|
||||
condition="input.sidebar == 'LogoP ED'",
|
||||
sliderInput(
|
||||
"display_position_full_range"
|
||||
, "Display Positions"
|
||||
, min=1, max=150, value=c(1,150)
|
||||
)
|
||||
),
|
||||
|
||||
|
||||
conditionalPanel(
|
||||
condition="
|
||||
input.sidebar == 'LogoP SNP' ||
|
||||
input.sidebar == 'LogoP OR' ||
|
||||
input.sidebar == 'LogoP ED'",
|
||||
selectInput(
|
||||
"logoplot_colour_scheme",
|
||||
label="Logo Plot Colour Scheme",
|
||||
choices = logoPlotSchemes,
|
||||
selected="chemistry"
|
||||
)
|
||||
),
|
||||
#conditionalPanel(
|
||||
# condition="input.sidebar == 'LogoP SNP' || input.sidebar == 'LogoP ED'|| input.sidebar == 'Consurf'",
|
||||
# numericInput(
|
||||
# "table_position"
|
||||
# , "Table Position", value=1
|
||||
# )
|
||||
#),
|
||||
conditionalPanel(
|
||||
condition="input.sidebar == 'Correlation'",
|
||||
selectInput(
|
||||
"corr_method",
|
||||
label="Correlation Method",
|
||||
choices = list("spearman",
|
||||
"pearson",
|
||||
"kendall"),
|
||||
selected="spearman"
|
||||
)
|
||||
),
|
||||
conditionalPanel(
|
||||
condition="input.sidebar == 'Correlation'",
|
||||
numericInput(
|
||||
"corr_lig_dist"
|
||||
, "Ligand Distance Cutoff (Å)", value=1
|
||||
)
|
||||
),
|
||||
|
||||
conditionalPanel(
|
||||
condition="input.sidebar == 'Correlation'",
|
||||
checkboxGroupInput(
|
||||
"corr_selected",
|
||||
"Parameters",
|
||||
choiceNames = c(
|
||||
"DeepDDG",
|
||||
"Dynamut2",
|
||||
"FoldX",
|
||||
"ConSurf"#,
|
||||
#"dst_mode"
|
||||
),
|
||||
choiceValues = c(
|
||||
"DeepDDG",
|
||||
"Dynamut2",
|
||||
"FoldX",
|
||||
"ConSurf"#,
|
||||
#"dst_mode"
|
||||
),
|
||||
selected = c(
|
||||
"DeepDDG",
|
||||
"Dynamut2",
|
||||
"FoldX",
|
||||
"ConSurf"#,
|
||||
#"dst_mode"
|
||||
)
|
||||
)
|
||||
),
|
||||
|
||||
conditionalPanel(
|
||||
condition="input.sidebar == 'DM OM Plots'",
|
||||
selectInput(
|
||||
"dm_om_param",
|
||||
label="Stability Parameter",
|
||||
choices = keys(dm_om_map),
|
||||
selected="SNAP2")
|
||||
),
|
||||
# colour_categ
|
||||
conditionalPanel(
|
||||
condition="input.sidebar == 'Stability SNP by site'",
|
||||
selectInput(
|
||||
"stability_snp_param",
|
||||
label="Stability Parameter",
|
||||
choices = stability_boxes_df$stability_type,
|
||||
selected="Average")
|
||||
),
|
||||
conditionalPanel(
|
||||
condition="input.sidebar == 'Stability SNP by site'",
|
||||
checkboxInput("reorder_custom_h",
|
||||
label="Reorder by SNP count",
|
||||
FALSE)
|
||||
),
|
||||
conditionalPanel(
|
||||
condition="input.sidebar.match(/^Lineage.*/)",
|
||||
checkboxInput("all_lineages",
|
||||
label="All Lineages",
|
||||
FALSE)
|
||||
),
|
||||
# an example of how you can match multiple things in frontend JS
|
||||
conditionalPanel(
|
||||
condition="input.sidebar == 'LogoP SNP' ||
|
||||
input.sidebar =='Stability SNP by site' ||
|
||||
input.sidebar =='Consurf' ||
|
||||
input.sidebar =='LogoP OR' ||
|
||||
input.sidebar =='LogoP ED'",
|
||||
actionButton("clear_ngl",
|
||||
"Clear Structure")
|
||||
),
|
||||
conditionalPanel(
|
||||
condition="input.sidebar == 'LogoP SNP' ||
|
||||
input.sidebar =='Stability SNP by site' ||
|
||||
input.sidebar =='Consurf' ||
|
||||
input.sidebar =='LogoP OR' ||
|
||||
input.sidebar =='LogoP ED'",
|
||||
actionButton("test_ngl",
|
||||
"Test NGLViewR")
|
||||
)#,
|
||||
|
||||
# downloadButton("save",
|
||||
# "Download Plot"
|
||||
# )
|
||||
# actionButton(
|
||||
# "reload_target",
|
||||
# label="Reload Target\nData (slow!)"
|
||||
# )
|
||||
|
||||
)
|
||||
),
|
||||
body <- dashboardBody(
|
||||
|
||||
tabItems(
|
||||
tabItem(tabName = "dashboard",
|
||||
h2("Dashboard tab content")
|
||||
),
|
||||
|
||||
tabItem(tabName = "widgets",
|
||||
h2("Widgets tab content")
|
||||
)
|
||||
),
|
||||
# creates a 'Conditional Panel' containing a plot object from each of our
|
||||
# ggplot plot functions (and its associated data frame)
|
||||
fluidRow(column(width=12,
|
||||
lapply(plot_functions_df$tab_name,
|
||||
function(x){
|
||||
|
||||
plot_function=plot_functions_df[
|
||||
plot_functions_df$tab_name==x,
|
||||
"plot_function"]
|
||||
|
||||
plot_df=plot_functions_df[
|
||||
plot_functions_df$tab_name==x,
|
||||
"plot_df"]
|
||||
cat(paste0('\nCreating output: ', x))
|
||||
generate_conditionalPanel(x, plot_function, plot_df)
|
||||
|
||||
}
|
||||
)
|
||||
)
|
||||
),
|
||||
#### fluidRow()s for "Stability Count" in the sidebar ####
|
||||
fluidRow(
|
||||
conditionalPanel(
|
||||
condition="
|
||||
input.sidebar == 'LogoP SNP' ||
|
||||
input.sidebar =='Stability SNP by site' ||
|
||||
input.sidebar =='Consurf' ||
|
||||
input.sidebar =='LogoP OR' ||
|
||||
input.sidebar =='LogoP ED'",
|
||||
column(NGLVieweROutput("structure"),
|
||||
width=3
|
||||
)
|
||||
),
|
||||
conditionalPanel(
|
||||
condition="
|
||||
input.sidebar == 'LogoP SNP' ||
|
||||
input.sidebar == 'Stability SNP by site' ||
|
||||
input.sidebar == 'Site SNP count' ||
|
||||
input.sidebar == 'Consurf' ||
|
||||
input.sidebar == 'LogoP OR' ||
|
||||
input.sidebar == 'LogoP ED'",
|
||||
column(
|
||||
DT::dataTableOutput('table'),
|
||||
width=9
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
server = function(input, output) {
|
||||
observeEvent({
|
||||
input$combined_model
|
||||
input$combined_data
|
||||
input$combined_training_genes
|
||||
input$score_dropdown
|
||||
input$resample_dropdown
|
||||
input$drug_dropdown
|
||||
input$split_dropdown
|
||||
|
||||
},{
|
||||
combined_model = input$combined_model
|
||||
selection = input$score_dropdown
|
||||
resampler = input$resample_dropdown
|
||||
selected_drug = input$drug_dropdown
|
||||
selected_split = input$split_dropdown
|
||||
combined_data = input$combined_data
|
||||
combined_training_genes = input$combined_training_genes
|
||||
|
||||
selected_gene = combo[combo$drug == selected_drug,'gene']
|
||||
|
||||
# hide stuff if selected
|
||||
if(combined_model == "combined") {
|
||||
#if(combined_model == TRUE) {
|
||||
|
||||
hide("split_dropdown")
|
||||
hide("resample_dropdown")
|
||||
show("combined_data")
|
||||
show("combined_training_genes")
|
||||
filedata = paste0(combined_training_genes,
|
||||
'genes_logo_skf_BT_',
|
||||
selected_gene,
|
||||
'_',
|
||||
combined_data
|
||||
)
|
||||
print(filedata)
|
||||
|
||||
print('doing COMBINED plot')
|
||||
output$plot <- renderPlot(makeplot(loaded_files[[filedata]],
|
||||
selection,
|
||||
"none", # always 'none' for combined plot
|
||||
gene = combo[drug==selected_drug,"gene"],
|
||||
combined_training_genes = combined_training_genes,
|
||||
display_combined = TRUE,
|
||||
)
|
||||
)
|
||||
# e.g.
|
||||
# makeplot(loaded_files$`5genes_logo_skf_BT_pnca_actual`, "MCC", "none" , gene = 'foo', combined_training_genes = '1234', display_combined = TRUE)
|
||||
} else {
|
||||
show("split_dropdown")
|
||||
show("resample_dropdown")
|
||||
hide("combined_data")
|
||||
hide("combined_training_genes")
|
||||
filedata = paste0(combo[drug==selected_drug,"gene"],
|
||||
'_baselineC_',
|
||||
selected_split
|
||||
)
|
||||
print(filedata)
|
||||
print("doing GENE plot")
|
||||
output$plot <- renderPlot(makeplot(loaded_files[[filedata]],
|
||||
selection,
|
||||
resampler,
|
||||
gene = combo[drug==selected_drug,"gene"],
|
||||
display_combined = FALSE,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
}
|
||||
# 6genes_logo_skf_BT_gid_complete
|
||||
|
||||
# filedata example for combined: 6genes_logo_skf_BT_embb_actual
|
||||
# 6genes_logo_skf_BT_embb_combined
|
||||
})
|
||||
}
|
||||
app <- shinyApp(ui, server)
|
||||
runApp(app)
|
||||
}
|
|
@ -98,6 +98,7 @@
|
|||
<div id="main">
|
||||
<a href = "drug-target/"><h2>Drug/Gene Target explorer</h2></a>
|
||||
<a href="ml/"><h2>ML/AI model explorer</h2></a>
|
||||
<a href="msa/"><h2>Multiple Sequence Alignment explorer</h2></a>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
|
BIN
msa/.global.R.swp
Normal file
BIN
msa/.global.R.swp
Normal file
Binary file not shown.
301
msa/global.R
Normal file
301
msa/global.R
Normal file
|
@ -0,0 +1,301 @@
|
|||
library(shinycssloaders)
|
||||
library(DT)
|
||||
library(NGLVieweR)
|
||||
library(hash)
|
||||
|
||||
load_target_globals=function(target){
|
||||
cat(paste0("Reloading Target: ", target))
|
||||
source(paste0("/srv/shiny-server/git/LSHTM_analysis/config/", target, ".R")) # load per-target config file
|
||||
|
||||
invisible(assign(paste0(target, "_merged_df3"), read.csv(paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/",target,"-merged_df3.csv")), envir = .GlobalEnv))
|
||||
invisible(assign(paste0(target, "_merged_df2"), read.csv(paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/",target,"-merged_df2.csv")), envir = .GlobalEnv))
|
||||
invisible(assign(paste0(target, "_corr_df_m3_f"), read.csv(paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/",target,"-corr_df_m3_f.csv")), envir = .GlobalEnv))
|
||||
invisible(assign(paste0(target, "_lin_lf"), read.csv(paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/",target,"-lin_lf.csv")), envir = .GlobalEnv))
|
||||
invisible(assign(paste0(target, "_lin_wf"), read.csv(paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/",target,"-lin_wf.csv")), envir = .GlobalEnv))
|
||||
lapply(
|
||||
c(
|
||||
"duet",
|
||||
"mcsm_lig",
|
||||
"foldx",
|
||||
"deepddg",
|
||||
"dynamut2",
|
||||
"consurf",
|
||||
"snap2",
|
||||
"provean",
|
||||
"dist_gen",
|
||||
"mcsm_ppi2"#,
|
||||
#"mcsm_na"
|
||||
), function(x){
|
||||
wf_filename=paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/", tolower(gene), "-wf_", x ,".csv")
|
||||
wf_var=paste0("wf_",x)
|
||||
if (file.exists(wf_filename)){
|
||||
invisible(assign(wf_var,read.csv(wf_filename), envir = .GlobalEnv)) # FILTH
|
||||
}
|
||||
lf_filename=paste0("/srv/shiny-server/git/Misc/shiny_dashboard/data/", tolower(gene), "-lf_", x ,".csv")
|
||||
lf_var=paste0(target, "_lf_",x)
|
||||
if (file.exists(lf_filename)){
|
||||
invisible(assign(lf_var,read.csv(lf_filename), envir = .GlobalEnv)) # FILTH
|
||||
}
|
||||
}
|
||||
)
|
||||
}
|
||||
# populate target-specific *_unified_msa vars
|
||||
load_msa_global=function(gene){
|
||||
drug=target_map[[gene]]
|
||||
in_filename_msa = paste0(tolower(gene), "_msa.csv")
|
||||
infile_msa = paste0("/srv/shiny-server/git/Data/", drug, "/output/", in_filename_msa)
|
||||
print(infile_msa)
|
||||
msa1 = read.csv(infile_msa, header = F)
|
||||
msa_seq = msa1$V1
|
||||
|
||||
infile_fasta = paste0("/srv/shiny-server/git/Data/", drug, "/input/", tolower(gene), "2_f2.fasta")
|
||||
print(infile_fasta)
|
||||
msa2 = read.csv(infile_fasta, header = F)
|
||||
wt_seq = msa2$V1
|
||||
|
||||
target_name=paste0(gene, '_unified_msa')
|
||||
#print(target_name)
|
||||
invisible(assign(target_name, list(msa_seq = msa_seq, wt_seq = wt_seq), envir = .GlobalEnv))
|
||||
}
|
||||
|
||||
#### Local Functions ####
|
||||
# Generate a conditionalPanel() for a given graph function and sidebar name combination
|
||||
generate_conditionalPanel = function(tab_name, plot_function, plot_df){
|
||||
# e.g.: list("lin_count_bp_diversity", "Lineage diversity count")
|
||||
cond=paste0("input.sidebar == '", tab_name, "'")
|
||||
conditionalPanel(condition=cond, box(
|
||||
title=tab_name
|
||||
, status = "info"
|
||||
, width=NULL
|
||||
, plotOutput(plot_function
|
||||
, click = "plot_click") %>% withSpinner(color="#0dc5c1")
|
||||
# , plotOutput(plot_function, click = "plot_click")
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
# FIXME: passing in the per-plot params is broken
|
||||
lin_sc=function(x, all_lineages = F, ...){
|
||||
lf_var = get(paste0(x,"_lin_lf"))
|
||||
wf_var = get(paste0(x,"_lin_wf"))
|
||||
cowplot::plot_grid(lin_count_bp_diversity(wf_var, all_lineages, ...), lin_count_bp(lf_var, all_lineages, ...))
|
||||
}
|
||||
|
||||
|
||||
options(shiny.port = 8000)
|
||||
options(shiny.host = '0.0.0.0') # This means "listen to all addresses on all interfaces"
|
||||
options(shiny.launch.browser = FALSE)
|
||||
options(width=120)
|
||||
options(DT.options = list(scrollX = TRUE))
|
||||
|
||||
|
||||
################ STATIC GLOBALS ONLY ##############
|
||||
# never quite sure where "outdir" gets set :-|
|
||||
|
||||
# using dataframes instead of lists lets us avoid use of map()
|
||||
plot_functions_df=data.frame(
|
||||
tab_name=c(
|
||||
"LogoP SNP",
|
||||
"Lineage Sample Count",
|
||||
"Site SNP count",
|
||||
"Stability SNP by site",
|
||||
"DM OM Plots",
|
||||
"Correlation",
|
||||
"Lineage Distribution",
|
||||
"Consurf",
|
||||
"LogoP OR",
|
||||
"LogoP ED"
|
||||
),
|
||||
plot_function=c(
|
||||
"LogoPlotSnps",
|
||||
"lin_sc",
|
||||
"site_snp_count_bp",
|
||||
"bp_stability_hmap",
|
||||
"lf_bp2",
|
||||
"my_corr_pairs",
|
||||
"lineage_distP",
|
||||
"wideP_consurf3",
|
||||
"LogoPlotCustomH",
|
||||
"LogoPlotMSA"
|
||||
),
|
||||
plot_df=c(
|
||||
"mutable_df3" ,
|
||||
"lin_lf",
|
||||
"mutable_df3",
|
||||
"merged_df3" ,
|
||||
"lf_duet" ,
|
||||
"corr_df_m3_f",
|
||||
"merged_df2",
|
||||
"merged_df3",
|
||||
"merged_df2",
|
||||
"unified_msa"
|
||||
)
|
||||
)
|
||||
|
||||
stability_boxes_df=data.frame(
|
||||
outcome_colname=c("duet_outcome",
|
||||
"foldx_outcome",
|
||||
"deepddg_outcome",
|
||||
"ddg_dynamut2_outcome",
|
||||
"mcsm_na_outcome",
|
||||
"mcsm_ppi2_outcome",
|
||||
"snap2_outcome",
|
||||
"consurf_outcome",
|
||||
"avg_stability_outcome"),
|
||||
stability_type=c(
|
||||
"DUET",
|
||||
"FoldX",
|
||||
"DeepDDG",
|
||||
"Dynamut2",
|
||||
"mCSM-NA",
|
||||
"mCSM-ppi2",
|
||||
"SNAP2",
|
||||
"Consurf",
|
||||
"Average"
|
||||
),
|
||||
stability_colname=c(
|
||||
"duet_scaled",
|
||||
"foldx_scaled",
|
||||
"deepddg_scaled",
|
||||
"ddg_dynamut2_scaled",
|
||||
"mcsm_na_scaled",
|
||||
"mcsm_ppi2_scaled",
|
||||
"snap2_scaled",
|
||||
"consurf_scaled",
|
||||
"avg_stability_scaled"
|
||||
)
|
||||
)
|
||||
|
||||
table_columns = c(
|
||||
"position",
|
||||
"mutationinformation",
|
||||
"sensitivity",
|
||||
"ligand_distance",
|
||||
"avg_lig_affinity",
|
||||
"avg_lig_affinity_outcome",
|
||||
"avg_stability",
|
||||
"avg_stability_outcome",
|
||||
"or_mychisq",
|
||||
"maf",
|
||||
"snap2_outcome",
|
||||
"consurf_outcome",
|
||||
"provean_outcome",
|
||||
"rsa",
|
||||
"kd_values" ,
|
||||
"rd_values"
|
||||
)
|
||||
|
||||
logoPlotSchemes <- list("chemistry"
|
||||
, "taylor"
|
||||
, "hydrophobicity"
|
||||
, "clustalx")
|
||||
dm_om_methods = c("DUET ΔΔG"
|
||||
, "Consurf"
|
||||
, "Deepddg ΔΔG"
|
||||
, "Dynamut2 ΔΔG"
|
||||
, "FoldX ΔΔG"
|
||||
, "Ligand affinity (log fold change)"
|
||||
, "mCSM-NA affinity ΔΔG"
|
||||
, "SNAP2")
|
||||
dm_om_map = hash(c(
|
||||
"DUET ΔΔG"
|
||||
, "Consurf"
|
||||
, "Deepddg ΔΔG"
|
||||
, "Dynamut2 ΔΔG"
|
||||
, "FoldX ΔΔG"
|
||||
, "Ligand affinity (log fold change)"
|
||||
, "mCSM-NA affinity ΔΔG"
|
||||
, "SNAP2"
|
||||
), c(
|
||||
"lf_duet"
|
||||
,"lf_consurf"
|
||||
,"lf_deepddg"
|
||||
,"lf_dynamut2"
|
||||
,"lf_foldx"
|
||||
,"lf_mcsm_lig"
|
||||
,"lf_mcsm_na"
|
||||
,"lf_snap2"
|
||||
)
|
||||
)
|
||||
#### target_map: handy gene/drug mapping hash ####
|
||||
target_map = hash(
|
||||
c(
|
||||
"alr",
|
||||
"gid",
|
||||
"embb",
|
||||
"pnca",
|
||||
"rpob",
|
||||
"katg"),
|
||||
c(
|
||||
"cycloserine",
|
||||
"streptomycin",
|
||||
"ethambutol",
|
||||
"pyrazinamide",
|
||||
"rifampicin",
|
||||
"isoniazid")
|
||||
)
|
||||
|
||||
# load E V E R Y T H I N G
|
||||
lapply(c(
|
||||
"alr",
|
||||
"embb",
|
||||
"gid",
|
||||
"katg",
|
||||
"pnca",
|
||||
"rpob"
|
||||
),function(x){
|
||||
invisible(load_target_globals(x))
|
||||
invisible(load_msa_global(x)) # turn off to speed up start time at the expense of "LogoP ED"
|
||||
}
|
||||
)
|
||||
|
||||
consurf_palette1 = c("0" = "yellow2"
|
||||
, "1" = "cyan1"
|
||||
, "2" = "steelblue2"
|
||||
, "3" = "cadetblue2"
|
||||
, "4" = "paleturquoise2"
|
||||
, "5" = "thistle3"
|
||||
, "6" = "thistle2"
|
||||
, "7" = "plum2"
|
||||
, "8" = "maroon"
|
||||
, "9" = "violetred2")
|
||||
|
||||
consurf_palette2 = c("0" = "yellow2"
|
||||
, "1" = "forestgreen"
|
||||
, "2" = "seagreen3"
|
||||
, "3" = "palegreen1"
|
||||
, "4" = "darkseagreen2"
|
||||
, "5" = "thistle3"
|
||||
, "6" = "lightpink1"
|
||||
, "7" = "orchid3"
|
||||
, "8" = "orchid4"
|
||||
, "9" = "darkorchid4")
|
||||
|
||||
# decreasing levels mess legend
|
||||
# consurf_colours_LEVEL = c(
|
||||
# "0" = rgb(1.00,1.00,0.59)
|
||||
# , "9" = rgb(0.63,0.16,0.37)
|
||||
# , "8" = rgb(0.94,0.49,0.67)
|
||||
# , "7" = rgb(0.98,0.78,0.86)
|
||||
# , "6" = rgb(0.98,0.92,0.96)
|
||||
# , "5" = rgb(1.00,1.00,1.00)
|
||||
# , "4" = rgb(0.84,0.94,0.94)
|
||||
# , "3" = rgb(0.65,0.86,0.90)
|
||||
# , "2" = rgb(0.29,0.69,0.75)
|
||||
# , "1" = rgb(0.04,0.49,0.51)
|
||||
# )
|
||||
|
||||
consurf_colours = c(
|
||||
"0" = rgb(1.00,1.00,0.59)
|
||||
, "1" = rgb(0.04,0.49,0.51)
|
||||
, "2" = rgb(0.29,0.69,0.75)
|
||||
, "3" = rgb(0.65,0.86,0.90)
|
||||
, "4" = rgb(0.84,0.94,0.94)
|
||||
, "5" = rgb(1.00,1.00,1.00)
|
||||
, "6" = rgb(0.98,0.92,0.96)
|
||||
, "7" = rgb(0.98,0.78,0.86)
|
||||
, "8" = rgb(0.94,0.49,0.67)
|
||||
, "9" = rgb(0.63,0.16,0.37)
|
||||
)
|
||||
|
||||
|
0
msa/server.R
Normal file
0
msa/server.R
Normal file
0
msa/ui.R
Normal file
0
msa/ui.R
Normal file
Loading…
Add table
Add a link
Reference in a new issue